COPYRIGHT, PLEASE NOTE
Wednesday, December 21, 2022
Milky Way, 12 years, 1250 hours of exposures and 125 x 22 degrees of sky
https://astroanarchy.zenfolio.com/
It took nearly twelve years to collect enough data for this high resolution gigapixel class mosaic image of the Milky Way. Total exposure time used is around 1250 hours between 2009 and 2021.
" I can hear music in this composition, from the high sounds of sparcs and bubbles at left all the way to a deep and massive sounds at right."
The final photo is about 100 000 pixels wide, it has 234 individual mosaic panels stitched together and 1,7 gigapixels. (Click for a large image) All the frames used are marked in this image. Since many of sub-images and mosaics are independent artworks it leads to a very complex mosaic structure.
NEW, A HD-video from Germany shows my photo in full glory
https://www.youtube.com/watch?v=D-Z60eZ4yqM
(Video in Germany but images are the international language)
Close ups form the parts of the Grande Mosaic
The California Nebula, NGC 1499, can be seen at bottom left of the large mosaic image.
There are about 20 million individual stars visible in the whole mosaic image.
Click for a large image
Image spans 125 x 22 degrees of the Milky About 20 million individual stars are visible in my photo!
My processing workflow is very constant so very little tweaking was needed between the mosaic frames. Total exposure time is over 1250 hours. Some of the frames has more exposure time, than others. There are some extremely dim objects clearly visible in this composition, like a extremely dim supernova remnant W63, the Cygnus Shell. It lays about six degrees up from North America nebula and it can be seen as a pale blue ring. I spent about 100 hours for this SNR alone. An other large and faint supernova remnant in Cygnus can be seen at near right edge of the image. G65.5+5.7 is as large as more famous Veil nebula. There are over 60 exposure hours for this SNR alone. (Veil SNR is just outside of the mosaic area for compositional reasons but can be seen in "Detail" image above.)
I took my current toolset as a base tool since it has a relatively high resolution combined to a very large field of view. Also it collects photons very quickly since it's undersampled and I can have very dim background nebulosity visible in very short time (many times 30 min frame is enough)
I do all my mosaic work under the PhotoShop, Matching the separate panels by using stars as an indicator is kind of straight forward work. My processing has become so constant, that very little tweaking is needed between separate frames, just some minor levels, curves and color balance.
I have used lots of longer focal length sub-frames in my mosaic to boost details. (See the mosaic map at top of the page) To match them with shorter focal length shots I developed a new method.
Firstly I upscale the short focal length frames about 25% to have more room for high resolution images.Then I match the high res photo to a mosaic by using the stars as an indicator. After that I remove all the tiny stars from the high res image. Next I separate stars from low res photo and merge the starless high res data to a starless low res frame. And finally I place the removed low res stars back at top of everything with zero data lost. Usually there are some optical distortions and it's seen especially in a star field. Now all my stars are coming from a same optical setup and I don't have any problems with distortions. (I'm using the same star removal technique as in my Tone Mapping Workflow)
Click for a large image
Click for a large image,
IC 405 6 410 area
The blog post with technical details can be seen here, https://astroanarchy.blogspot.com/2020/10/the-tulip-nebula-in-cygnus-sh2-101.html
Monday, February 14, 2022
Supernova remnant HB3 and the cosmic heart
I have shot this target originally at January 14 2020 and it was the second light to my modified Tokina lens. Now I have reprocessed the data and I do like this result much better.
new imaging system based on Tokina AT-x 300mm f2.8 camera lens.
SNR 132.7+1.3 at upper right. Source and more information, http://galaxymap.org/drupal/node/103
5nm H-alpha 3nm S-II and 3nm O-III
O-III, 3x 600 s, binned 1x1 = 30 min..
S-II, 2x1200 s, binned 2x2 = 40 min.
Wednesday, January 5, 2022
Cygnus Mosaic in Visual Colors
Three Musketeers of Swan
There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers.
I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.
The mapped color version of this mosaic can be seen here, https://astroanarchy.blogspot.com/2021/12/cygnus-mosaic-gets-large.html
Click for a large image
Click for a large image
Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.
Next to the Tulip Nebula lays a Black hole Cygnus X-1
Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.
Monday, December 20, 2021
Cygnus mosaic gets large
The new composition is made so that the veil nebula supernova remnant fits to the field of view.
There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers.
I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. Least I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.
The previous version of this mosaic can be seen here, Great Mosaic of Cygnus
Three large supernova remnants in the same field of view
Click for a large image
ZOOMABLE VERSION
Click for a large image
Three large supernova remnants in constellation Cygnus, the Swan, are in image as colored circles
NOTE, there is an apparent size of the Moon as a scale at lower right corner in a grayscale image.
Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.
Next to the Tulip Nebula lays a Black hole Cygnus X-1, it's marked in small closeup image of the Tulip Nebula at center right in orientation image above.
Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.
Thursday, September 30, 2021
Filaments of Veil Nebula SNR
I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. An older mapped color version can be seen here, https://astroanarchy.blogspot.com/2016/12/filaments-of-veil-nebula.html
Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo.
Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.
Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.
A closeup
Click for a large image
Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality. More info about my 3D-technique at end of this blog post: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html
NOTE. It looks like that the animation has less stars, than the original 2d-image. That's not true, stars is normal photo are getting projected to a same plane. In 3D-model stars are in volume and it only looks like, that there are less stars.
Tuesday, September 28, 2021
Veil nebula unveiled II
I haven't start the imaging season yet, up here 65N. Nights are still short and I haven't got my imaging rig ready after the mandatory six months Summer break.
I have reprocessed some older shots with new data, this time the Veil nebula supernova remnant in Cygnus. Original image was shot with the Canon EF 200 mm f1.8 camera optics full open, QHY9 astro camera and Baader narrowband filters at 2013.
New data is shot with Tokina 300mm f2.8 camera optics and Celestron Edge HD 11" telescope, Apogee Alta U16 astro camera with Astrodon narrowband filters.
Total exposure time is now about 45 hours. I published yesterday a Pickering's Triangle photo taken with Celestron Edge HD 11"-. It's part of this new image among other.
Veil nebula Unveiled
Click for a large image, 1250 x 1700 pixels
https://astroanarchy.blogspot.com/2013/12/veil-nebula-unveiled.html
Tuesday, September 21, 2021
Supernova Remnant Simeis 147, new data added
I have made a new version of my NASA APOD and National Geographic Image of the Week photo. Simeis 147 is a large and very dim supernova remnant in constellation Taurus.
I combined an old data with a new data, with different optics and camera, together.
As a result I have more details, vivid colors and better overall signal in the new photo. An
older photo is from 2011 and the new photo from 2020. Total exposure time in this new composition is over 45 hours.
Simeis 147 SNR
Click for a large image, 1700 x 1200 pixels
An Experimental Starless Version
How long it'll takes to this supernova remnant to expand 1% large when the diameter is 160 light years and it expands at speed of 1000 km/second.
(1% of diameter 160/100= 16, as kilometers ~151.372.800.000.00, = Y, km,
1000 km/second is ~315.360.000.00, = Z, kilometers/year.
So, X x Z = Y and X=Z/Y, X = 480 years with given values)
Every single element in Vision series photos are from my original astronomical photos. I have been using the Overlapping Lightning Method (Multi Exposure Method) to create my Vision series photographs. By this method the forms and structures in astronomical object get multiplied, they are now forming a new visual dimension beyond our physical universe.
Photo from 2011
H-alpha 42x1200s, binned 1x1
Sunday, August 1, 2021
A new photo, Monkey Head Nebula, Lower's nebula, Jelly Fish nebula and Messier 35
I shot material for this mosaic image at end of the spring season 2021. I haven't got time to finalize it until now. I kind of like this image, it's very deep and shows the very dim background mist and a very dense starfield of the galaxy plane. Total exposure time with Tokina AT-x 300mm f2,8 camera lens, Apogee u16 Astro camera and Astrodon narrowband filters is around 6 hours, the exposure time with Celestron Edge telescope is around 30 hours.
An other interesting feature in this imaging project is that I did use my VARES-processing method to this.
(Variable Resolution imaging) I have shot the nebulae in this wide field image with a long focal length instrument, the Celestron Edge 11" few years ago. I use this high res material to boost details in the wide field image. But that's not all!
I used the VARES technique to add deepness to my older long focal length images. I added the very dim background nebula data from wide filled images to long focal length images. The result was very good. Now all detailed features in the image, like stars, brighter nebula details and dark nebulae are form high res image data. The dim and relatively featureless data is taken from the wide field image. At the end the both datasets are combined by VARES-processing method to a one very deep and detailed image.
Click for a large image!
Monkey Head nebula, NGC 2175
Click for a large image
The wide field data boosted long focal length image, original photo and details can be seen here, https://astroanarchy.blogspot.com/2015/03/ngc-2174-monkey-head-nebula-project.html
I think, this was a first image in the World showing the extremely dim lower part, "Teil of the Monkey", of the nebula.
Click for a large image
Click for a large image
Wednesday, June 23, 2021
Photo number 8, The Chinese Dragon
Duration ~one minute
When you spent a decade working with a one photo to get it ready, it's like a long marriage. The passionate love is slowly turning to a deeper connection and at the end you'll grow together and can't live without the others company. As in marriage, during the years I have had friction in the relationship, even hate. But after desperate times the love always wins.
I'm a perfectionist, when dealing with my photography. This feature is essential for a great results but it also can cause problems in relationship. There have been times when I almost get a divorce and started looking for another, easier target since I couldn't get out all of the extreme dim and difficult details I wanted to see and show. I didn't even know, if they are there since there wasn't any references to compare. I didn't give up and finally after long nights and hundreds of exposure hours I get what I was after. Now we can grow old together and I know for sure, I will always find something new and existing from my love one, the Chinese Dragon..
I have started this imaging project back at 2010. My aim was to make a high resolution mosaic covering the whole constellation Cygnus. Work like that takes time and patience, especially since I have worked so, that many of the individual sub mosaics or frames can be published as an individual artworks. Here is a poster format presentation about all of the longer focal length images used for this mosaic beside longer focal length panels.
As a result I have now a huge 95 panel mosaic panorama covering 28 x 18 degrees of sky. I have collected photons way over 600 hours during past ten years for this photo. The full size mosaic image has a size of about 25.000 x 15.000 pixels.
Just outside of the field of view lays the famous Veil Nebula SNR at bottom middle.
Beside two supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.
Next to the Tulip Nebula lays a Black hole Cygnus X-1.
Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this area of night sky is very inspiring There are endless amount of amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.
Original resolution in pixels, 25.000 x 15.000
The NASA astronomer wrote about this image:
I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set.
After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set.
I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.
A version of this photo was selected as an Astronomical Picture Of the Day by NASA
Here is a poster format presentation and a list all of longer focal length images used for this mosaic beside the actual panels, https://astroanarchy.blogspot.com/2018/11/treasures-of-swan.html
Click for a large image