COPYRIGHT, PLEASE NOTE
Saturday, January 4, 2025
New photo of NGC 281
This photo is made by combining 10 h of new H-alpha exposures to a 10 h of exposures with my older long focal length telescope from 2015. Beside that, there are 5 hours of data taken with Tokina AT-x 300mm f2.8 camera lens back in 2020. Very dim background mist comes mainly from camera lens data.
With 3 h S-II and O-III exposures the total exposure time was 31 hours.
Deep view to the NGC 281
Click for a full size, 2700x2500 pixels
The seeing wasn't very good so I couldn't quite split the two of the stars but it can be seen, that there are two stars very close to each other visually.
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.
INFO
NGC 281 is a busy workshop of star formation. Prominent features include a small open cluster of stars, a diffuse red-glowing emission nebula, large lanes of obscuring gas and dust, and dense knots of dust and gas in which stars may still be forming. The open cluster of stars IC 1590 visible around the center has formed only in the last few million years. The brightest member of this cluster is actually a multiple-star system shining light that helps ionize the nebula's gas, causing the red glow visible throughout. The lanes of dust visible below the center are likely homes of future star formation. Particularly striking in the above photograph are the dark Bok globules visible against the bright nebula. Stars are surely forming there right now. The entire NGC 281 system lies about 10 thousand light years distant. (Source, NASA APOD)
With my new imaging system I can get deeper with a good resolution, than my old long focal length toolset was able to. The secondary mirror focusing system takes care of focusing and temperature compensation, I can keep the heavy main mirror locked down all the time. Heavy mirror has a tendency to move a bit when the scope moves and that can mess up the collimation.
The current system keeps collimation perfect all the time.
An other great accessory is the Active Optics Unit from Starlight Xpress. It's as easy to use as any OAG, the good update speed to a 11 mag star is around 8Hz. The AO-unit removes all the minor tracking errors very fast. The Mesu Mount Mark II has a periodic error under four arcseconds and that's a very small error, even so, AO unit gives a better image quality since the corrections are made by moving a light weight piece of glass, the heavy load of the scope and accessories doesn't need to move for corrections.
Structure study of the NGC 281
Please, click for a large image
H-alpha, 30 x 1200 s, binned 1x1 = 10 h (11" Celestron EDGE, shot at 2015)
H-alpha, 15 x 1200 x, binned 1x1 = 5h (Tokina AT-x 300mm f2.8, shot at 2020)
A single calibrated 20 min exposure of H-alpha, Bin 1x1
Saturday, December 21, 2024
Sharpless 132, A Furious Cosmic Horse Gets Blinded by a Divine Blue Light
This is one of my favorite targets in Cepheus, Sh2-132 has an interesting structures due to massive energetic stars in it. I haven't found any explanation to the blue, jet like, structure glowing blue light of ionized Oxygen (O-III), the structure is visible also in H-alpha light.
When I shot firs photos out of this distant object about twenty years ago, I gave a longish name to it, "A Furious Cosmic Horse Gets Blinded by a Divine Blue Light" I don't usually name my photos but with some of them I simply must do so.
This is a kind of high resolution photo taken with my new imaging platform, it covers about 0.7 x0.7 degrees of sky. (Full Moon has an apparent diameter 0,5 degrees) Seeing was very good to my location, FWHM about 1.6 arcseconds, that's rare up here.
Sharpless 132
A Furious Cosmic Horse Gets Blinded by a Divine Blue Light
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.
A single calibrated 20 min exposure of H-alpha, Bin 1x1
Sunday, December 15, 2024
New Photo, Sharpless 115 in Cygnus
This Portion of sky covers less than a square degrees of sky in Constellation Cygnus, the Swan.
This star nursery has always looked to me like like it was cut out of the Baroque painting.
I was able to shoot a high resolution data for it with my new imaging setup. The Celestron Edge 14". This telescope has a beautiful optics and with a secondary mirror focuser, it'll hold the collimation perfectly all the time. Normally the heavy main mirror is used for focusing and it can be source of optical problems when it moves due to gravity when the scope is moving and pointing to a different portions of sky.
BAROQUE SKY OF SHARPLESS 115
Click for a full size photo, 2000x2000 pixels
sulfur=red, hydrogen=green and oxygen=blue
Shining with the light of ionized atoms of hydrogen, sulfur, and oxygen in this Hubble palette color composite image, the nebular glow is powered by hot stars in star cluster Berkeley 90. The cluster stars are likely only 100 million years old or so and are still embedded in Sharpless 115. But the stars' strong winds and radiation have cleared away much of their dusty, natal cloud. At the emission nebula's estimated distance, this cosmic close-up spans just under 100 light-years.
Source: NASA APOD
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.
This is my very large mosaic photo of the whole Cygnus, more info about this massive photo
Monday, December 9, 2024
Wizard Nebula, NGC 7380
My new setup has a long focal length optics, Celestron EDGE 14", after years of shooting the wider field astronomical photos, it's very nice to dig in to the details of those cosmic wonders.
My new photo shows the Wizard nebula in Cepheus, I have shot this target many times with a various optical configurations. The combination of 14" telescope and large 12 micron pixels of my "new" second hand camera, Apogee Alta U9000M, delivers an optimal resolution to my seeing conditions (0.91 arcsecond/pixel). This makes possible to go very deep in relatively short cumulative exposure time, as can be seen in this photo. A dim background nebulosity stand out nicely after about six hours of H-alpha exposures.
Click for a full size photo, 2000x2000 pixels
sulfur=red, hydrogen=green and oxygen=blue
Click for a full size photo, 2000x2000 pixels
Click for a full size image.
Thursday, November 28, 2024
Beauty and the Beast, Tulip Nebula and a Black Hole
I started to collect exposures for this photo back in 2014, now I have shot new high resolution material for this amazing target with my new imaging platform.
I see several layers in my photos and that makes them to tell a story beyond any imagination.
First
A visual layer, that's naturally very important to me as a visual artist, revealing the hidden cosmic beauty and poetry is my passion.
Second
The physical layer, how emission of the nebulae works, radiation pressure, nuclear fusion of the star, gravitational phenomes, etc... all that is extremely beautiful in its own class.
Third
An existential layer, where we are coming and where we are going in a cosmic scale.
Practically all of the heavier elements in our bodies are coming from supernova explosion's, iron in our blood, oxygen, carbon, etc... We are children of the stars
When our Sun will die after few billion years and turn to a planetary nebula, it'll vaporize the Earth and our remains on it and blows them to the outer space. After aeons our remains are going to end up to a building blocks for a new generation of stars.
We all have been stars and one day we going to be stars again.
BEAUTY AND THE BEAST
Tulip Nebula and a Black Hole
Click the photo to see a high resolution photo, it's worth it
sulfur=red, hydrogen=green and oxygen=blue
Black Hole, Cygnus X-1, in a Close Up of the Full Resolution Photo
Click the photo to see a high resolution photo, it's worth it
The complex and beautiful Tulip Nebula, Sharpless 101, blossoms about 8,000 light-years away toward the constellation of Cygnus the Swan. Ultraviolet radiation from young energetic stars ionizes the atoms and powers the emission from the Tulip Nebula.
Also in the featured field of view is the black hole Cygnus X-1, which is also a microquasar because it is one of strongest X-ray sources in planet Earth's sky. The powerful jets from the black hole can't be seen in this photo since they glow light in X-ray wave length. Faint bluish curved shock front, visible at up center, is coursed by the X-ray jet when it hits to a interstellar gas and dust.
Why we can see the black hole in this image as a star like object?
We can't see the actual black hole but we can see how the material is twirling in the black hole. The speed become so high that the matter starts to turn to an energy emitting light trough the whole spectrum up to X-ray and gamma radiation.
Photo in Visual Colors
Click the photo to see a high resolution photo, it's worth it
sulfur=red, hydrogen=red and oxygen=blue
A single, full scale, 20 min H-alpha exposure, Bin 1x1
Click for a full scale image.
Click for a full scale image.
Tuesday, October 29, 2024
Methuselah Nebula, MWP1, project finalized
Click for a full size image
A single, full size, 20 min H-alpha and O-III exposure
Click for a full scale image.
Both images below are jpg photos of a single full size, 20 min. FIT-format 16 bit image.
Photos are calibrated with darks and bias corrected flats and are heavily stretched to show even a hint of the actual nebula.
H-alpha
Wednesday, December 21, 2022
Milky Way, 12 years, 1250 hours of exposures and 125 x 22 degrees of sky
https://astroanarchy.zenfolio.com/
It took nearly twelve years to collect enough data for this high resolution gigapixel class mosaic image of the Milky Way. Total exposure time used is around 1250 hours between 2009 and 2021.
" I can hear music in this composition, from the high sounds of sparcs and bubbles at left all the way to a deep and massive sounds at right."
The final photo is about 100 000 pixels wide, it has 234 individual mosaic panels stitched together and 1,7 gigapixels. (Click for a large image) All the frames used are marked in this image. Since many of sub-images and mosaics are independent artworks it leads to a very complex mosaic structure.
NEW, A HD-video from Germany shows my photo in full glory
https://www.youtube.com/watch?v=D-Z60eZ4yqM
(Video in Germany but images are the international language)
Close ups form the parts of the Grande Mosaic
The California Nebula, NGC 1499, can be seen at bottom left of the large mosaic image.
There are about 20 million individual stars visible in the whole mosaic image.
Click for a large image
Image spans 125 x 22 degrees of the Milky About 20 million individual stars are visible in my photo!
My processing workflow is very constant so very little tweaking was needed between the mosaic frames. Total exposure time is over 1250 hours. Some of the frames has more exposure time, than others. There are some extremely dim objects clearly visible in this composition, like a extremely dim supernova remnant W63, the Cygnus Shell. It lays about six degrees up from North America nebula and it can be seen as a pale blue ring. I spent about 100 hours for this SNR alone. An other large and faint supernova remnant in Cygnus can be seen at near right edge of the image. G65.5+5.7 is as large as more famous Veil nebula. There are over 60 exposure hours for this SNR alone. (Veil SNR is just outside of the mosaic area for compositional reasons but can be seen in "Detail" image above.)
I took my current toolset as a base tool since it has a relatively high resolution combined to a very large field of view. Also it collects photons very quickly since it's undersampled and I can have very dim background nebulosity visible in very short time (many times 30 min frame is enough)
I do all my mosaic work under the PhotoShop, Matching the separate panels by using stars as an indicator is kind of straight forward work. My processing has become so constant, that very little tweaking is needed between separate frames, just some minor levels, curves and color balance.
I have used lots of longer focal length sub-frames in my mosaic to boost details. (See the mosaic map at top of the page) To match them with shorter focal length shots I developed a new method.
Firstly I upscale the short focal length frames about 25% to have more room for high resolution images.Then I match the high res photo to a mosaic by using the stars as an indicator. After that I remove all the tiny stars from the high res image. Next I separate stars from low res photo and merge the starless high res data to a starless low res frame. And finally I place the removed low res stars back at top of everything with zero data lost. Usually there are some optical distortions and it's seen especially in a star field. Now all my stars are coming from a same optical setup and I don't have any problems with distortions. (I'm using the same star removal technique as in my Tone Mapping Workflow)
Click for a large image
Click for a large image,
IC 405 6 410 area
The blog post with technical details can be seen here, https://astroanarchy.blogspot.com/2020/10/the-tulip-nebula-in-cygnus-sh2-101.html