COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

BUY A MUSEUM QUALITY POSTER

Showing posts with label EDGE 14". Show all posts
Showing posts with label EDGE 14". Show all posts

Saturday, January 4, 2025

New photo of NGC 281


This photo is made by combining 10 h of new H-alpha exposures to a 10 h of exposures with my older long focal length telescope from 2015. Beside that, there are 5 hours of data taken with Tokina AT-x 300mm f2.8 camera lens back in 2020. Very dim background mist comes mainly from camera lens data.
With 3 h S-II and O-III exposures the total exposure time was 31 hours.

Deep view to the NGC 281
Click for a full size, 2700x2500 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue



A Portion of the Full Resolution Photo

I haven't noticed before that there is a triple star system at the star cluster IC 1590
The seeing wasn't very good so I couldn't quite split the two of the stars but it can be seen, that there are two stars very close to each other visually.




NGC 281 in visual palette
Click for a full size, 2700x2500 pixels

Visual color version of Sh2-115 glows mostly in red from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.



SIAMESE FIGHTING FISH NEBULA

When I was processing the data for this photo I had a feeling that I have seen this shape and color combination before, soon it hit me, it was a picture of Siamese Fighting Fish 

INFO

NGC 281 is a busy workshop of star formation. Prominent features include a small open cluster of stars, a diffuse red-glowing emission nebula, large lanes of obscuring gas and dust, and dense knots of dust and gas in which stars may still be forming. The open cluster of stars IC 1590 visible around the center has formed only in the last few million years. The brightest member of this cluster is actually a multiple-star system shining light that helps ionize the nebula's gas, causing the red glow visible throughout. The lanes of dust visible below the center are likely homes of future star formation. Particularly striking in the above photograph are the dark Bok globules visible against the bright nebula. Stars are surely forming there right now. The entire NGC 281 system lies about 10 thousand light years distant. (Source, NASA APOD)

With my new imaging system I can get deeper with a good resolution, than my old long focal length toolset was able to. The secondary mirror focusing system takes care of focusing and temperature compensation, I can keep the heavy main mirror locked down all the time.  Heavy mirror has a tendency to move a bit when the scope moves and that can mess up the collimation. 
The current system keeps collimation perfect all the time.

An other great accessory is the Active Optics Unit from Starlight Xpress. It's as easy to use as any OAG, the good update speed to a 11 mag star is around 8Hz. The AO-unit removes all the minor tracking errors very fast. The Mesu Mount Mark II has a periodic error under four arcseconds and that's a very small error, even so, AO unit gives a better image quality since the corrections are made by moving a light weight piece of glass, the heavy load of the scope and accessories doesn't need to move for corrections.

Structure study of the NGC 281

Pillar like formations in the gas cloud are forming when the radiation pressure (Solar Wind) from the open cluster IC 1590 blows the gas and dust away and  coursing some parts of the gas collapse.Due to that, they all are pointing to the source of the solar wind, open cluster IC 1590, as I have shown in the image above.


NGC 281 in a large context
Please, click for a large image

NGC 281 can be seen in this wide field mosaic image of the constellation Cassiopeia at bottom center.
This photo is also a small part of a massive mosaic image of the Northern Milky Way Galaxy.


Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 31h
H-alpha, 30 x 1200 s, binned 1x1 = 10 h (14" Celestron EDGE)
H-alpha, 30 x 1200 s, binned 1x1 = 10 h (11" Celestron EDGE, shot at 2015)
H-alpha, 15 x 1200 x, binned 1x1 = 5h (Tokina AT-x 300mm f2.8, shot at 2020)
O-III,9x 1200 s, binned 2x2 = 3h (11" Celestron EDGE, shot at 2015)
S-II, 9 x 1200 s. binned 2x2 = 3h (11" Celestron EDGE, shot at 2015)


A single calibrated 20 min exposure of 
H-alpha, Bin 1x1
 Click for a full size image.



Saturday, December 21, 2024

Sharpless 132, A Furious Cosmic Horse Gets Blinded by a Divine Blue Light

 This is one of my favorite targets in Cepheus, Sh2-132 has an interesting structures due to massive energetic stars in it. I haven't found any explanation to the blue, jet like, structure glowing blue light of ionized Oxygen (O-III), the structure is visible also in H-alpha light.

When I shot firs photos out of this distant object about twenty years ago, I gave a longish name to it, "A Furious Cosmic Horse Gets Blinded by a Divine Blue Light" I don't usually name my photos but with some of them I simply must do so.

This is a kind of high resolution photo taken with my new imaging platform, it covers about 0.7 x0.7 degrees of sky. (Full Moon has an apparent diameter 0,5 degrees) Seeing was very good to my location, FWHM about 1.6 arcseconds, that's rare up here. 


Sharpless 132
A Furious Cosmic Horse Gets Blinded by a Divine Blue Light

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue



100% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels





The Horse, as I see it

I borrowed a horse from the Piazza Navona Roma, it was a furious enough



INFO
 
Sharpless 132 (Sh2-132) is powered by two massive stars, each with a mass over 20 times greater than our Sun. Formed from shells of ionized gas that have expanded, the nebula's energetic matter not only glows, but is dense enough to contract gravitationally and form stars. The angular size of the Lion Nebula, officially named Sh2-132, is slightly greater than that of the full moon. The gaseous iconic region resides about 10,000 light years away in a constellation named after the King of Aethopia in Greek mythology.


Sharpless 132 in visual colors
Click for a full size photo, 2500x2500


Visual color version of Sh2-115 glows mostly in red from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.



Sh2-132 in a large context
Please, click for a large image

Sharpless 132 is marked with a white rectangle at center right



Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 11h
H-alpha, 15 x 1200 s, binned 1x1 = 5 h
O-III,9x 1200 s, binned 2x2 = 3h 
S-II, 9 x 1200 s. binned 2x2 = 3h






A single calibrated 20 min exposure of 
H-alpha, Bin 1x1
 Click for a full size image.





Sunday, December 15, 2024

New Photo, Sharpless 115 in Cygnus

This Portion of sky covers less than a square degrees of sky in Constellation Cygnus, the Swan.
This star nursery has always looked to me like like it was cut out of the Baroque painting.

I was able to shoot a high resolution data for it with my new imaging setup. The Celestron Edge 14". This telescope has a beautiful optics and with a secondary mirror focuser, it'll hold the collimation perfectly all the time. Normally the heavy main mirror is used for focusing and it can be source of optical problems when it moves due to gravity when the scope is moving and pointing to a different portions of sky.


BAROQUE SKY OF SHARPLESS 115
Click for a full size photo, 2000x2000 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue



200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels




INFO

 Sharpless 115 stands just north and west of Deneb, the alpha star of Cygnus, the Swan, in planet Earth's skies. Noted in the 1959 catalog by astronomer Stewart Sharpless (as Sh2-115) the faint but lovely emission nebula lies along the edge of one of the outer Milky Way's giant molecular clouds, about 7,500 light-years away.

Shining with the light of ionized atoms of hydrogen, sulfur, and oxygen in this Hubble palette color composite image, the nebular glow is powered by hot stars in star cluster Berkeley 90. The cluster stars are likely only 100 million years old or so and are still embedded in Sharpless 115. But the stars' strong winds and radiation have cleared away much of their dusty, natal cloud. At the emission nebula's estimated distance, this cosmic close-up spans just under 100 light-years.

Source: NASA APOD

Sharpless 115 in visual colors
Click for a full size photo, 2000x2000 pixels

Visual color version of Sh2-115 glows mostly in red from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.




Sh2-115 in a large context
Please, click for a large image, NOTE. 4000x5000 pixels

Sharpless 155 is marked with a white rectangle at lower left.
This is my very large mosaic photo of the whole Cygnus, more info about this massive photo


Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 12h
H-alpha, 18 x 1200 s, binned 1x1 = 6 h
O-III,9x 1200 s, binned 2x2 = 3h 
S-II, 9 x 1200 s. binned 2x2 = 3h


A single calibrated 20 min exposure of H-alpha, Bin 1x1
 Click for a full size image.






Monday, December 9, 2024

Wizard Nebula, NGC 7380

 My new setup has a long focal length optics, Celestron EDGE 14", after years of shooting the wider field astronomical photos, it's very nice to dig in to the details of those cosmic wonders.

My new photo shows the Wizard nebula in Cepheus, I have shot this target many times with a various optical configurations. The combination of 14" telescope and large 12 micron pixels of my "new" second hand camera, Apogee Alta U9000M, delivers an optimal resolution to my seeing conditions (0.91 arcsecond/pixel). This makes possible to go very deep in relatively short cumulative exposure time, as can be seen in this photo. A dim background nebulosity stand out nicely after about six hours of H-alpha exposures. 

WIZARD OF CEPHEUS
Click for a full size photo, 2000x2000 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue



The Wizard, as I see it
Click for a full size photo, 2000x2000 pixels



INFO

NGC 7380, the Wizard Nebula, locates in constellation Cepheus at distance of about 8500 light years from us. The Nebula surrounds an open star cluster NGC 7380. Stars, gas, and dust has created a shape that appears to some like a fictional medieval sorcerer. The active star forming region spans about 100 light years, making it appear larger than the angular extent of the Moon. The Wizard Nebula can be located with a small telescope toward the constellation of the King of Aethiopia (Cepheus). 



WIZARD IN VISUAL COLORS
Click for a full size photo, 2000x2000 pixels

Visual color version from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.




200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels



Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 12h
H-alpha, 18 x 1200 s, binned 1x1 = 6 h
O-III,9x 1200 s, binned 2x2 = 3h 
S-II, 9 x 1200 s. binned 2x2 = 3h

A single, full scale, 20 min H-alpha exposure, Bin 1x1
 Click for a full size image.








Tuesday, October 15, 2024

WR 134, The Rising Phoenix

BUY A POSTER
https://astroanarchy.zenfolio.com/

This is the second light for my new imaging setup, the first light image can be seen HERE

For years I have wanted to shoot a long focal length photo of this amazing mass ejecting star in constellation Cygnus, the Swan. Past five years I have done short focal length imaging with camera optics, now it's time to get closer.

I spent several clear nights to capture light emitted by an ionized elements in this gas formation. (H-alpha, S-II and O-III) For compositional reasons I ended up to a two panel mosaic image. Total exposure time is 23h.

When processing the final image I couldn't be noticing how much this formation looked like a mystical creature, the Phoenix Bird.  I rarely use any other than official catalog numbers as a name of my photos but this time I simply had to name this composition to "Rising Phoenix". 

When art meets science, the results can be beautiful. It can become something more than either of them on their own can ever be.


WR 134 as a Rising Phoenix
Click for a large image, 2500x1300 pixels photo shows the WR 134 like never seen before.

The photo is in mapped colors from an ionized elements, H-alpha=green, S-II=red and O-III=blue, Original resolution is 12.000 x 7000 pixels



200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels




RISING PHOENIX PAREIDOLIA
Click for a large image

This image shows how I see the Phoenix Bird in this image


Info about the WR 134

WR 134 is a variable Wolf-Rayet star located around 6,000 light years away from us in the constellation of Cygnus. It's surrounded by a faint bubble of glowing ionized oxygen, blown out by the intense radiation and fast solar wind from the star. The star has five times the radius of the sun and it's 400,000 times more luminous.


My Wide Field Photo of the Area

Click for a large image, ~2500x2000 pixels

WR 134 can be seen just up left from the center, at right from the middle lays the Tulip Nebula, 
Sh2-101. I took this narrowband  photo with Tokina AT-X 300mm f2.8 camera lens @ full open. 
The camera was a Apogee Alta U16 with an Astrodon narrowband filter set, exposure time around 10h. This is a one frame image. Note, the "noise" in the background is not a noise, there are millions of stars
This photo is a part of very large mosaic image, 
can you find the WR 134 from THIS massive panorama of Northern Milky Way



WR 134, the Rising Phoenix in visual spectrum
Click for a large image, ~2500x1300 pixels

The photo is in visual colors from an ionized elements, H-alpha=red, S-II=red and O-III=blue





A Starless Image of WR 134 Animated
Click for a large image

I made this small animation to show some interesting structures in the gas clouds, they are maybe hints about some earlier outbursts of the star. There are also two almost parallel straight line like structures. The one just under the bubble can be seen in H-alpha light. The second, much dimmer one, locates just right from the red line and can be seen only in O-III light.



An Animation about emission layers
Click for a large image

In this animation the blue O-III channel can be seen alone without other two emission lines in image,  H-alpha and S-II, and in a last frame, without other stars but WR134 visible




Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, Celestron EDGE 14" with 0.7 Focal reducer

Mount, MesuMount Mark II

Cameras, Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 23h
H-alpha, 15 x 1200 s, binned 1x1 = 5 h
O-III, 45x 1200 s, binned 1x1 = 15h 
S-II, 9 x 1200 s. binned 2x2 = 3h


A single, full scale, 20 min O-III exposure
 Click for a full scale image.

This is a dim target, 1200s O-III exposure doesn't show much about the O-III formation around the star WR 134.

This is one of the test shots after the collimation procedure. Exposure time is 1200s with 3nm O-III filter. Image is calibrated with Dark Frame and Bias corrected Flat Frame. Target is WR 134 in Cygnus. Stars are pinpoint from corner to corner. Optical analysis of this frame can be found at end of THIS blogpost


PS,


Terminator Arrives from the Future
My wife saw the new photo and pointed out, that the blue formation looks like an electric bubble used for a time traveling, as seen in a Terminator movies.





BUY A POSTER
https://astroanarchy.zenfolio.com/





Wednesday, October 9, 2024

FIRST LIGHT FOR MY NEW IMAGING SETUP

 After a couple of years I'm able to publish a bran new photo!

This is a first light to my new imaging setup, it took couple of years to get it up and running.

I selected a relatively bright target since I wanted to test the system as soon as possible. The Pelican Nebula in constellation Cygnus, the Swan, is my first target.

The new system has a focal length of 2730mm with a massive 0.7 focal reducer for the Celestron EDGE 14" telescope. The new camera has 12 micron pixel size and it gives me an image scale of 0.91 arc seconds/pixel. (That's perfect for my seeing conditions.) The field of view spans 46.1 x 46.1 arcminutes of sky. (For a scale, Full Moon covers 30x30 arcminutes of sky)

The native resolution of the Apogee Alta U9000M camera is 3056x3056 pixels. I'm using a stacking method that doubles the measures by using the "Drizzle" while imaging. The final image is then 6112x6112 pixels. 

Only five hours of light from an ionized hydrogen (H-alpha) is used for this photo. Other two color channels, O-III and S-II, are borrowed from my older long focal length photo of this target taken with Celestron EDGE 11" telescope.

Pelican Nebula
Click the photo to see a 2000x2000 pixel version


Click the image to see a full size version
This photo is in mapped colors from light from an ionized elements, hydrogen = green, sulfur=red and oxygen=blue. (H-alpha, S-II and O-III)


200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels








A Full Size H-alpha Frame
Click the image to see a full size version, 3056x3056 pixels

This is a stretched stack of  fifteen 20min. calibrated H-alpha frames. Collimation wasn't perfect at the time so some oval stars can be seen in lower right corner.  Now the collimation is under one arcseconds and the whole frame has pinpoint stars from corner to corner. (It's a large CCD, diagonal is 52mm) Optical analysis at end of this blog post, 

Herbig-Haro Objects

Herbig–Haro (HH) objects are bright patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionized gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometers per second. Herbig–Haro objects are commonly found in star-forming regions. (Source, Wikipedia)


I have labeled Herbig-Haro Objects in this closeup from my photo.



Technical details

Processing workflow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics

Celestron EDGE 14" with 0.7 Focal reducer
Mount
MesuMount Mark II

Cameras and filters
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 6hz

Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time

H-alpha, 15 x 1200 s, binned 1x1 = 5 h (Data from new setup)
O-III, 3x 1200 s, binned 2x2 = 1h (Older data with 11" Celestron EDGE)
S-II, 3 x 1200 s. binned 2x2 = 1h (Older data with 11" Celestron EDGE






Saturday, September 28, 2024

NEW SETUP FOR MY ASTRONOMICAL NATURE IMAGING WORK

 I haven't publish much new images in past two three years since I have had some health problems. Now I'm good as new and can start working again. Past two years I have been slowly building a new imaging platform. I have done some shorter focal length work past six years, now it's time to go closer again.


OPTICS

System is build around Celestron EDGE 14" telescope, I selected this scope due to its light gathering capacity, 356mm diameter and 3910mm native focal length (This very large and heavy 0.7 Reducer is especially made for the EDGE 14") One main difference to normal Celestron EDGE telescope is that I have added a secondary mirror focuser (by Optec)  to get rid of a mirror flop. It can be a problem, especially with a heavy mirror. Bottom line,  this scope has an excellent optical quality. There is some optical analysis and a single full scale 20min frame at end of this post.

In future I can add a "HyperStar system" to replace secondary mirror and use this telescope as a fast f2 astrograph. 


Secondary mirror focuser, Note a curved vane for the flat power/data cable, no diffraction spikes!
The focuser is made all aluminium, it's really robust and easy to collimate.



MOUNT

I ended up to a MESU Mount MARK II since it has 100kg capacity at imaging work with a periodic error less than 4 arcseconds peak-to-peak, impressive numbers indeed. It also has zero lash back due to its friction drive system. One of the nice features is the 80mm diameter channel for all of the cords, trough the Ra and Dec axes, no more dragging cords!

The pillar I ordered with the mount is bended knee pillar type, no meridian flip is needed and telescope can track whole sky without stopping. The pillar came in easy to handle parts and assembly was very straight forward, the assembled pillar is very rigid under the weight of heavy telescope, counter weights and accessories. 

Mesu mount is absolute beautiful engineering work. Support from manufacture is also very good. I had some minor problems with settings at first but they get solved in no time after we went it trough with remote connection, while on site. Bottom line, money wise this mount is a real bargain, if compared its features to any other brand or model of mount.

Bended Knee Pillar angle at my location 65 degree North. 
Counter weights are stainless steal weight lifting weights. (~35kg)

The 14" Telescope barely fits to my SkyShed POD



CAMERA AND ACCESSORIES


CAMERA

The Main camera is a "new" Apogee Alta U9000M with Apogee Filter wheel. It's a second hand camera originally used for the microscopic work and it looks like a bran new, There wasn't any mechanical shutter but I moved a shutter from my old Apogee Alta U16 to this new camera. (My old camera died to an old age)
The camera has 12 micron pixels, it's a perfect match to this optical configuration giving an image scale of 0.91 arcseconds per pixel. The full image spans 46.1 x 46.1 arcminutes of sky. (One degree is 60 arcminutes and Full Moon spans around 30 arcminutes of sky)

INSTRUMENT ROTATOR

At first time I have added an instrument rotator to the imaging path. I haven't use any rotator earlier since there is always some flexure. 

The Wanderer Astro Rotator Pro has absolute zero flexure by the manufacture. I was very skeptical to this since if it moves, it will flex. It turned out, that there is a patented system based on neodymium magnets around the light path holding everything tightly together when rotator moves.  

After measuring carefully everything with the CCD-inspector software from test exposures under the starfield I can say, it really has no flexures at all. It's only 18 mm thick and fit to my limited back focus nicely. The rotator can handle flawlessly all the heavy load I have placed behind it.

ACTIVE OPTIC UNIT

Maybe an overkill but I have added an active optics unit to the light path. It's SXV-AO from Starlight Xpress UK.

I have had really good experiences doing long focal length imaging with AO unit during the years. It doesn't correct the actual seeing so much but it corrects every small or big error from heat bubbles and vibrations from heavy traffic, wind, etc. and it does that really really fast. 

It's as easy to use as any OAG, especially after I had an instrument rotator. With 14" scope, I can guide around 10 HZ by using mag 11 guide star. The MESU Mount is really good but there is lots of mass to move when guiding corrections are made. With AO there is just a small refracting glass element to move instead of telescope and heavy accessories.

DATA & POWER BOX

An other new accessory is power and data box from Wanderer Astro. It makes the system less chaotic with all the data and power cords. Also controlling power and data connections can be done remotely in one software. It can handle nearly 20 amp at peak power.

DEW BUSTER

There is also my old Dew Buster installed to the telescope. it can keep the temperature just little over the dew point, this prevent the heat current. Raising warm air inside the tube will ruin the image, if heater is even slightly too warm.

FAN

I added a 70 mm computer fan to the telescopes air went to reduce the cool down time. There is an air filter in the went to prevent the dust getting inside the OTA. I can control the fan speed by the Power Box software.

QHY POLEMASTER

This is a new addition too, I was amazed how easy it was to use. Polar align took maybe 15 min and it's easy to redo at any time needed. here is a REVIEW about this little helper,



Telescope elements labeled


QHY Polemaster, lens cover removed and ready for the action.


LENS COVER

As a last item here is a lens cover for Celestron EDGE 14" telescope. It's a simple and a must accessory to prevent dust in the collector lens. How ever, in my case there is a secondary mirror focuser sticking out and it prevents to use the standard Celestron aluminium cover over the telescope. 

I solved the problem by cutting a circular hole in the lens cover. After that, I bought a steel bowl from local market ( it was just 5 € or about 5 $)  I sprayed it matt black and glued it to the cover with an elastic, rubber like, superglue. 

A steel bowl glued over the hole in the lens cover.



AN UPDATE, 09.10.2024,
THE FIRST LIGHT IMAGE
Click for a full size image, ~2000x2000 pixels

All the technical details and more image material of the first light photo can be found in this Blog Post:
https://astroanarchy.blogspot.com/2024/10/first-light-for-my-new-imaging-setup.html


OPTICAL ANALYSIS FROM THE CCDINSPECTOR APP


The optical collimation is as good as I get it in my seeing conditions and the optical tube hold it perfectly since the main mirror is always locked down and focusing is done with the Optec Secondary Mirror Focuser only.




This is a 3D-plot of field curvature from the CCDInspector app of Celestron Edge 14" with 0.7 Focal Reducer and Apogee Alta U9000M with 12 micron pixels. This configuration produce a very flat field and stars are sharp from edge to edge in the whole field. This is impressive especially since the CCD in Alta U9000M is so large, about 37x37mm. 

A single full scale 20 min O-III exposure used for the optical analysis

This is one of the test shots after the collimation procedure. Exposure time is 1200s with 3nm O-III filter. Image is calibrated with Dark Frame and Bias corrected Flat Frame. Target is WR 134 in Cygnus. Stars are pinpoint from corner to corner. There is no stretching done, Click for a full scale image.