COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

BUY A MUSEUM QUALITY POSTER

Wednesday, January 29, 2025

A Cosmic genesis, IC 410 in Auriga

This must be one of my best photos so far, and I'm very pleased with the result.

I’ve been shooting this target over and over again for decades, and every time it has shown me something new. (There are links to older versions of IC410 at the end of this blog post.)

This has been a fascinating object for me, as it holds great symbolism. Overall, this nebula resembles a microscopic photo of human fertilization, where new life is about to be born, and the germ cells are meeting each other.

New things are being born in this photo as well, but not life as we know it. At the tips of those tadpole-like formations, the gas is collapsing, and new stars are beginning to form. For scale, those tadpoles are about ten light-years long and located about 10,000 light-years away from us.

In fact, they are the second generation of stars in this nebula. The first group was the open cluster of stars at the center of the image, NGC 1893. This group of stars is also responsible for the appearance of the entire nebula complex. The radiation pressure from the stars shapes the gas and causes it to glow by ionizing the elements within it. This same radiation pressure also causes the gas to collapse, starting the process of second-generation star formation in the nebula.

The seeing was very good in my conditions, with an FWHM of 1.6 (typically it's between 2.2 - 3.0). The total exposure time is around 30 hours, collected over several nights during a three-month period between the end of 2024 and the beginning of 2025


A Cosmic Genesis, IC 410 
Click for a full size, 2700x2400 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue




A Full Resolution Detail
Click for a full size, 2100x2100 pixels

Tadpole like formations are ten light years long and locates 10.000 light years from us. 
New stars are forming in the tips of them since the gravity gets the gas and dust collapsing. When  the  pressure and heat are high enough, nuclear fusion of lighter elements is able start , the new star is born.  




IC 410 in Visual Colors
Click for a full size, 2400x2400 pixels

Visual color version of Sh2-115 glows mostly in red from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette







IC 410 in a Large Content


A massive mosaic Photo of Auriga
The area of the new photo is marked as a white rectangle
Click for a full size, 2900x1600 pixels

A large mosaic image of the constellation Auriga
Info about this massive photo can be seen in this Blog post:

https://astroanarchy.blogspot.com/2020/03/the-grande-mosaic-of-auriga.html



A little Closer
Click for a full size, 2400x2400 pixels

A mosaic image of the constellation Auriga
Info about this massive photo can be seen in this Blog post:
https://astroanarchy.blogspot.com/2020/03/new-photo-deep-in-to-darkness.html



INFO

This cosmic view shows off an otherwise faint emission nebula IC 410, captured with 14" telescope and narrowband filters. Above and right of center you can spot two remarkable inhabitants of the interstellar pond of gas and dust, known as the tadpoles of IC 410. Partly obscured by foreground dust, the nebula itself surrounds NGC 1893, a young galactic cluster of stars. Formed in the interstellar cloud a mere 4 million years ago, the intensely hot, bright cluster stars energize the glowing gas. Globules composed of denser cooler gas and dust, the tadpoles are around 10 light-years long and are likely sites of ongoing star formation. Sculpted by stellar winds and radiation their heads are outlined by bright ridges of ionized gas while their tails trail away from the cluster's central young stars. IC 410 and embedded NGC 1893 lie some 10,000 light-years away, toward the nebula-rich constellation Auriga.
Source; NASA APOD




My older photos of the IC 410 in Chronological Order

2008, my first photo of IC 410, https://astroanarchy.blogspot.com/2008/03/ic-405-410-with-color.html

2008, my second tryout with IC 410, https://astroanarchy.blogspot.com/2008/11/ic405-ic410-in-hst-hubble-space.html

2010, version, https://astroanarchy.blogspot.com/2010/01/ic-410-cosmic-fertilization.html

2012, version, https://astroanarchy.blogspot.com/2012/12/a-cosmic-fertilization.html

2015 version, https://astroanarchy.blogspot.com/2015/02/new-photo-ic-410-in-auriga.html

2015, 3D studies of IC410, https://astroanarchy.blogspot.com/2015/07/an-experimental-3d-study-of-emission_28.html

2020, a wide field mosaic, https://astroanarchy.blogspot.com/2020/03/new-photo-deep-in-to-darkness.html

2020, IC 410 as apart of an interesting mosaic version, https://astroanarchy.blogspot.com/2020/03/the-birth-of-venus.html


IC 410,  a Photo from 2012  vs 2025 Version of it
Click for a full size, 1500x1500 pixels


I noticed some movement in a one star, it's marked at upper right
There are other small movement at stars but it's just due to a different optical curvatures between two optical configurations.


Several details that I hadn’t noticed before are now clearly visible. I have attached a large animated GIF where my 2012 photo of IC 410 is compared to this latest version. There is also one star moved a bit during the years, it's marked at upper right. (A small difference in star locations is due to some optical curvature in my older imaging setup.) 

The details in the tadpoles are much clearer in the new version, the dark nebulae now show fine structures, and the gas complex at the lower left—barely visible in the 2012 photo—now reveals beautiful details. The amount and clarity of the stars are amazing in the new version, along with many other small features that have now been captured.


About processing this Photo

I processed the image extra carefully to avoid losing any delicate details in both the bright and dark areas of the nebula complex. For example, I hadn't noticed the gas formations in the lower left end of the large crescent-shaped arch in my previous photos.

The total exposure time for this photo is 32 hours. Out of the 20 hours used for hydrogen-alpha (H-α) light, only about five had good seeing conditions. I created two separate stacks for H-α data—one from exposures taken under good seeing conditions and another from exposures taken under less favorable conditions. I processed both stacks separately using the exact same method. In the final step, I merged them into a single long-exposure image.

The method I used was somewhat unorthodox. In Photoshop, I applied the exact same procedure to both images to remove the brighter high-signal noise elements in photo. As a result, I ended up with two relatively featureless images of hydrogen-alpha emission.

In the next step, I reconstructed an image containing only the removed details from the photo taken under good seeing conditions. I did this by layering the featureless image with the original image containing all the details. Then, I changed the layer mode to "Difference" and merged the layers. I simply tossed away the brighter parts from the image taken under poor seeing conditions.

Next, I stacked these two featureless images using CCDStack2. Finally, I reintroduced the brighter details from the good-seeing image into the newly stacked featureless image using the linear add mode in Photoshop layers.

As a result, I achieved strong signal for the dimmer parts of the image while maintaining excellent detail in the brighter areas. When I added the brighter details back into the final image, the noise level remained extremely low due to the strong background signal.

Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 30h
H-alpha, 60 x 1200 s, binned 1x1 = 20 h 
O-III,21x 1200 s, binned 2x2 = 7h 
S-II, 15 x 1200 s. binned 2x2 = 5h 



A single calibrated 20 min exposure of 
H-alpha, Bin 1x1
 Click for a full size image.



It does look like a human germ cells







No comments: