COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Showing posts with label Tokina 300mm f2.8 images. Show all posts
Showing posts with label Tokina 300mm f2.8 images. Show all posts

Wednesday, December 21, 2022

Milky Way, 12 years, 1250 hours of exposures and 125 x 22 degrees of sky THIS IS A PERMANENT POST, NEW POSTS ARE AFTER THIS POST

You can buy prints by using the contact form at right


It took nearly twelve years to collect enough data for this high resolution gigapixel class mosaic image of the Milky Way.  Total exposure time used is around 1250 hours between 2009 and 2021.


" I can hear music in this composition, from the high sounds of sparcs and bubbles at left  all the way to a deep and massive sounds at right."


The final photo is about 100 000 pixels wide, it has 234 individual mosaic panels stitched together and 1,7 gigapixels. (Click for a large image) All the frames used are marked in this image. Since many of sub-images and mosaics are independent artworks it leads to a very complex mosaic structure. 


From Taurus to Cygnus
Click for a large image, it's really worth it! (7000 x 1300 pixels)

Image in mapped colors from the light emitted by an ionized elements, hydrogen = green, sulfur = red and oxygen = blue. NOTE, the apparent size of the Moon in a lower left corner. NOTE 2, there are two 1:1 scale enlargements from the full size original at both ends of the image

NEW, A HD-video from Germany shows my photo in full glory

https://www.youtube.com/watch?v=D-Z60eZ4yqM
(Video in Germany but images are the international language)


Close ups form the parts of the Grande Mosaic
Taurus side of the mosaic, https://astroanarchy.blogspot.com/2021/02/a-new-mosaic-image-from-taurus-to.html



A closeup from large panorama to show the overall resolution
Click for a large image

The California Nebula, NGC 1499, can be seen at bottom left of the large mosaic image.
There are about 20 million individual stars visible in the whole mosaic image.



Orientation and details
Click for a large image








Imaging info

Image spans 125 x 22 degrees of  the Milky About 20 million individual stars are visible in my photo!

It took almost twelve years to finalize this mosaic image. The reason for a long time period is naturally the size of the mosaic and the fact, that image is very deep. Another reason is that I have soht most of the mosaic frames as an individual compositions and publish them as independent artworks. That leads to a kind of complex image set witch is partly overlapping with a lots of unimaged areas between and around frames. I have shot the missing data now and then during the years and last year I was able to publish many sub mosaic images as I got them ready first.

My processing workflow is very constant so very little tweaking was needed between the mosaic frames. Total exposure time is over 1250 hours. Some of the frames has more exposure time, than others. There are some extremely dim objects clearly visible in this composition, like a extremely dim supernova remnant W63, the Cygnus Shell. It lays about six degrees up from North America nebula and it can be seen as a pale blue ring. I spent about 100 hours for this SNR alone. An other large and faint supernova remnant in Cygnus can be seen at near right edge of the image. G65.5+5.7 is as large as more famous Veil nebula. There are over 60 exposure hours for this SNR alone.  (Veil SNR is just outside of the mosaic area for compositional reasons but can be seen in "Detail" image above.) 


The Mosaic Work, technical info

I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set. After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set. I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.

I took my current toolset as a base tool since it has a relatively high resolution combined to a very large field of view. Also it collects photons very quickly since it's undersampled and I can have very dim background nebulosity visible in very short time (many times 30 min frame is enough)

I do all my mosaic work under the PhotoShop, Matching the separate panels by using stars as an indicator is kind of straight forward work. My processing has become so constant, that very little tweaking is needed between separate frames, just some minor levels, curves and color balance. 

I have used lots of longer focal length sub-frames in my mosaic to boost details. (See the mosaic map at top of the page) To match them with shorter focal length shots I developed a new method.

Firstly I upscale the short focal length frames about 25% to have more room for high resolution images.Then I match the high res photo to a mosaic by using the stars as an indicator. After that I remove all the tiny stars from the high res image. Next I separate stars from low res photo and merge the starless high res data to a starless low res frame. And finally I place the removed low res stars back at top of everything with zero data lost. Usually there are some optical distortions and it's seen especially in a star field. Now all my stars are coming from a same optical setup and I don't have any problems with distortions. (I'm using the same star removal technique as in my Tone Mapping Workflow)



Closeups from large panorama to show the overall resolution
Click for a large image

Image in mapped colors from the light emitted by an ionized elements, hydrogen = green, sulfur = red and oxygen = blue. 

A 1:3 resolution close up from the photo above
Click for a large image,

A closeup from the main image shows the Sharpless 124 at up and the Cocoon nebula with a dark gas stream at bottom.

From Bubble to Cave Nebula
Image info, https://astroanarchy.blogspot.com/2020/03/from-bubble-to-cave-nebula-area.html

The tulip nebula area
The Tulip Nebula, Sh2-101, can be seen at center right, there is also a black hole Cygnus X-1
The blog post with technical details can be seen here, 
https://astroanarchy.blogspot.com/2020/10/the-tulip-nebula-in-cygnus-sh2-101.html

The supernova remnant G65.3+5.7

My Observatory,


Not an igloo, this is reality of astro photographing in Finland


Thursday, March 3, 2022

Sharpless 114, a Cosmic Dragon, is now the Ukrainian Ironbelly



This cosmic photograph is dedicated to Ukrainian people and a deadly fight they are forced to. 

The whole world is now witnessing the barbaric actions of the brutal Russian dictator Putin. As an artist and astrophotographer, I thought about what I could do to help Ukraine and its people. All proceeds from the sale of this NFT will go to efforts supporting the Ukrainian people during this war.

I have renamed Sharpless 114, the Flying Dragon Nebula, to the Ukrainian Ironbelly, after a dragon seen in Harry Potter movie, Harry Potter and the Deathly Hallows: Part 2


UKRAINIAN IRONBELLY
(Click for a large image)

 
Upper imageFlying Dragon nebula, Sharpless 114 (Sh2-114)
Bottom Image, Ukrainian Ironbelly dragon - as seen in Harry Potter Movie
Harry Potter and the Deathly Hallows: Part 2 
WB Studio Tour Entrance Claire Evans / Alamy Stock Photo


4K MOVIE,
SHARPLESS 114, THE UKRAINIAN IRONBELLY

4K movie, best seen as full screen


A story behind this artwork

Few days ago I was working with my new photo, showing a rarely imaged object Sharpless 114 in Eastern part of constellation Cygnus, the Swan. The official nickname for the object is the Flying Dragon Nebula. As I worked with this photo, I had a strong feeling that I have seen it before but I couldn't remember where.

I woke up in the middle of the night realizing that I have seen this nebula in the movie,  Harry Potter and the Deathly Hallows: Part 2  (Yes, I'm a nerd)

There is a magical creature in a movie, a massive dragon called the Ukrainian Ironbelly. It turned out to be the creature that among other things, helped Ukrainians during the WW1 as a "wizarding air force" (Source Harry Potter Fandom Wiki)

I believe that this can be a great symbol for the Ukrainian fight against the Russian monsters.

This is also a great symbol for a modern version of Ukrainian Ironbelly, the Turkish made drone, Bayraktar-TB2, a most important weapon in war against Russians tanks in Ukraine. As a dragon, this drone is producing a steel melting "jet of fire" against murderess Russian main battle tanks and saves countless of Ukrainian lives as we speak.

This is an extremely personal art project to me as a Finnish citizen. We have a 1340 km (830 mi) common border with Russia and there is a huge risk that we might be the next victims of the brutal dictator of Russia.

All proceeds from the sale of this NFT will go to efforts supporting the Ukrainian people during this war.


History of Ukrainian Ironbelly by Harry Potter Fandom
Source: https://harrypotter.fandom.com/wiki/Ukrainian_Ironbelly

Ironbellies had been subject to constant observation by the Ukrainian wizarding authorities, ever since a particular Ironbelly carried off a sailing ship from the Black Sea in 1799. Thankfully, the boat was empty at the time.

In 1926, Newt Scamander mentioned to Jacob Kowalski that he had previously worked with Ukrainian Ironbellies during the First World War. In that same war, Ukrainian Ironbellies were also considered for use in a wizarding air force. The Ironbelly could produce jets of flame up to 3,560 degrees Fahrenheit (1960 degrees Celsius).


It does look like a dragon
(Click for a large image)




This artwork is also a symbol of the Bayraktar-TB2 drone, a modern version of Ukrainian Ironbelly. It has saved countless of Ukrainian lives from a barbaric attack of the brutal dictator Putin

This Turkish drone has saved countless of Ukrainian lives from a barbaric attack of the brutal dictator Putin


INFO about Sharpless 114, Sh2-114

Sh2-114 is a complex and unusual HII emission nebula. Its complex, wispy structure is likely the result of winds from hot, massive stars interacting with the magnetic fields in the interstellar medium. But very little is known about it. (Source, https://www.noao.edu/image_gallery/html/im1112.html)


Technical details of the photo

I have combined the old and new data by my new powerful imaging and processing method,
the VARES (VAriable RESolution imaging)

Processing workflow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 21 iterations, added at 25% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2 and SXV-AOL



Astrodon filter, 5nm H-alpha
Astrodon filter, 3nm O-III
Astrodon filter, 3nm S-II

Exposure times
H-alpha, 9x 1200s = 3h
O-III, 3 x 1200s binned = 1h 
S-II,  3 x 1200s binned = 1h 

New Data

Imaging optics
Tokina AT-x f2.8 camera lens

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200

Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Exposure time

H-alpha, 15 x 1200 s, binned 1x1 = 5 h
O-III, 1x 1200 s, binned 2x2 = 20 min.
S-II, 1 x 1200 s. binned 2x2 = 20 min.

Sharpless 114, orientation in Cygnus

The Sh2-114 is marked as white rectangle




Monday, February 14, 2022

Supernova remnant HB3 and the cosmic heart

 I have shot this target originally at January 14 2020 and it was the second light to my modified Tokina lens. Now I have reprocessed the data and I do like this result much better.

 new imaging system based on Tokina AT-x 300mm f2.8 camera lens.


The Heart Nebula, IC 1805
Please, click for a large image

Going very deep just in two hours! Image is in visual color palette from emission of an ionized hydrogen and oxygen. R=hydrogen, G=Oxygen and B=oxygen. I have made a starless version out of this image, it can be seen here, https://astroanarchy.blogspot.com/2020/01/an-animated-heart-nebula-ic1805805-with.html



SUPERNOVA REMNANT 132.7+1.3 (HB3)
IC 1805 in visual palette
Please, click for a large image


Supernova remnant

In this photo there is a large supernova remnant, marked as a white circle. I haven't seen any photos of it before. I must take more O-III exposures to see, if I'm able to pick up any signal from this supernova remnant. 

Radio image of the area shows mostly signal from OB6


SNR 132.7+1.3 at upper right. Source and more information, http://galaxymap.org/drupal/node/103


Technical details

Processing workflow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Tokina AT-x 300mm f2.8 camera lens

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200

Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time
H-alpha, 12 x 600 s, binned 1x1 = 2 h
O-III, 3x 600 s, binned 1x1 = 30 min..
S-II, 2x1200 s, binned 2x2 = 40 min.

INFO About undersampling etc

The CCD I'm using has kind of large pixels, 9 microns, so I'm undersampled, the image scale is almost 5 arc seconds / pixel. Undersampling is not a bad thing when my targets are large and dim nebula complexes. This system collects photons very fast!

I selected the Heart Nebula as a target since I have plenty of reference material for it. Another reason is interesting and rarely imaged area after the bright tip of the heart. There are some remnants of a supernova explosion. I was really thrilled, when I saw the final stack of 12 600s H-alpha light frames. (Equal to 2h of exposures) I never have seen so much background nebulae and details from this popular target.
Beside 2h of H-alpha (Light from an ionized hydrogen) I shot 30 min of O-IIII (Light from an ionized Oxygen) To be able to make an image in visual palette.

Wednesday, January 5, 2022

Cygnus Mosaic in Visual Colors

 Three Musketeers of Swan 

Deepest and most detailed image showing the whole constellation Cygnus ever taken

There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers. 

I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.

The mapped color version  of this mosaic can be seen here, https://astroanarchy.blogspot.com/2021/12/cygnus-mosaic-gets-large.html

Bang, Bang & Bang
Three large supernova remnants in the same field of view
Click for a large image

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.

ZOOMABLE VERSION



Three Large Supernova Remnants
Click for a large image

Locations and names of the supernova remnants

INFO

Three supernova remnants, two Wolf Rayet stars and a black hole

In the orientation image above, there are three large supernova remnants visible, first the Cygnus Shell W63 , bluish ring at middle left, secondly the large SNR G65.3+5.7 at upper right and the third is a brighter SNR, the Veil nebula at right edge of the image.

Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.

Next to the Tulip Nebula lays a Black hole Cygnus X-1

Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of  amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.

Equipments used

I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set. After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set. I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.

Monday, December 20, 2021

Cygnus mosaic gets large

 Three Musketeers of Swan 
Deepest and most detailed image showing the whole constellation Cygnus ever taken

The new composition is made so that the veil nebula supernova remnant fits to the field of view.
There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers

I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. Least I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.

The previous version  of this mosaic can be seen here, Great Mosaic of Cygnus  

Bang, bang & bang
Three large supernova remnants in the same field of view
Click for a large image

This is a large area of sky, it spans 31 x 23 degrees of sky. Image is in mapped colors, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen.  



ZOOMABLE VERSION

Image is reduced to 6000 x 7700 pixels size from the original 20.000 x 25.500 pixels.


118 Mosaic Panels
Click for a large image

All the 112 frames used are shown in this image. Since many of the frames are originally shot as independent artworks, panel structure is very complex. Also different instruments has a different field of view and resolution, so mosaic panels are at three different size.   


DETAILS
Click for a large image


Three large supernova remnants in constellation Cygnus, the Swan, are in image as colored circles
NOTE, there is an apparent size of the Moon as a scale at lower right corner in a grayscale image.



INFO

Three supernova remnants, two Wolf Rayet stars and a black hole

In the orientation image above, there are three large supernova remnants visible, first the Cygnus Shell W63 , bluish ring at middle left, secondly the large SNR G65.3+5.7 at upper right and the third is a brighter SNR, the Veil nebula at right edge of the image.

Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.

Next to the Tulip Nebula lays a Black hole Cygnus X-1, it's marked in small closeup image of the Tulip Nebula at center right in orientation image above. 

Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of  amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.

Equipments used

I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set. After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set. I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.

Thursday, September 30, 2021

Filaments of Veil Nebula SNR

 I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. An older mapped color version can be seen here, https://astroanarchy.blogspot.com/2016/12/filaments-of-veil-nebula.html

Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo. 

Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.

Filaments of central veil
Click for a large image (1100 x 2900 pixels)


Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.

A closeup
Click for a large image




Orientation
Click for a large image


 

Unveiling the Veiled


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality. More info about my 3D-technique at end of this blog post: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html

NOTE. It looks like that the animation has less stars, than the original 2d-image. That's not true, stars is normal photo are getting projected to a same plane. In 3D-model stars are in volume and it only looks like, that there are less stars.





Tuesday, September 28, 2021

Veil nebula unveiled II

 I haven't start the imaging season yet, up here 65N. Nights are still short and I haven't got my imaging rig ready after the mandatory six months Summer break.

I have reprocessed some older shots with new data, this time the Veil nebula supernova remnant in Cygnus. Original image was shot with the Canon EF 200 mm f1.8 camera optics full open, QHY9 astro camera and Baader narrowband filters at 2013.

New data is shot with Tokina 300mm f2.8 camera optics and Celestron Edge HD 11" telescope, Apogee Alta U16 astro camera with Astrodon narrowband filters.
Total exposure time is now about 45 hours. I published yesterday a Pickering's Triangle photo taken with Celestron Edge HD 11"-. It's part of this new image among other.


Veil nebula Unveiled
Click for a large image, 1250 x 1700 pixels

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.


A Closeup
Click for a large image





An older image from 2013 can be found here,
https://astroanarchy.blogspot.com/2013/12/veil-nebula-unveiled.html







Tuesday, September 21, 2021

Supernova Remnant Simeis 147, new data added

 I have made a new version of my NASA APOD and National Geographic Image of the Week photo. Simeis 147 is a large and very dim supernova remnant in constellation Taurus.

I combined an old data with a new data, with different optics and camera, together.
As a result I have more details, vivid colors and better overall signal in the new photo. An
older photo is from 2011 and the new photo from 2020. Total exposure time in this new composition is over 45 hours.


Simeis 147 SNR
Click for a large image, 1700 x 1200 pixels

Image is in mapped colors, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen


An Experimental Starless Version

Actual filaments of the supernova remnant can be seen better in this starless version.

A Closeup




Photo in Visual palette



INFO

Simeis 147 (sharpless 240), is a very faint and large supernova remnant in constellation Taurus at distance of ~3000 light years. It's constantly expanding at speed of 1000 km/second but due the size of it, we can't see any movement in it. This SN spans over 160 light years and the apparent scale in the sky is about three degrees (Moon has an apparent size of 30" = 0,5 degrees).  Explosion took place approximately 30.000 years ago  and left behind a  pulsar (Neutron star). The pulsar has recently identified.

How long it'll takes to this supernova remnant to expand 1% large when the diameter is 160 light years and it expands at speed of 1000 km/second.
Answer is ~480 years.
 (1% of diameter 160/100= 16, as kilometers ~151.372.800.000.00, = Y, km,
1000 km/second is ~315.360.000.00, = Z, kilometers/year.
So, X x Z = Y and  X=Z/Y,    X = 480 years with given values)


SOMETHING DIFFERENT!

This artwork belongs to my VISION Series, the image is made out of my original photo of starless Simeis 147 supernova remnant.

Every single element in Vision series photos are from my original astronomical photos. I have been using the Overlapping Lightning Method (Multi Exposure Method) to create my Vision series photographs. By this method the forms and structures in astronomical object get multiplied, they are now forming a new visual dimension beyond our physical universe.





Closeup


Artworks are made purely out of starless Simeis 147 image.



Technical Details


Photo from 2020

Processing workflow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200
Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time
H-alpha, 15 x 1200 s, binned 1x1 = 5 h
O-III, 24x 600 s, binned 2x2 = 4 h
S-II, 1 x 12 x 600 s. binned 2x2 = 2 h

Photo from 2011

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Levels, curves and color combine in PS CS3.

Optics, Canon EF 200mm camera lens at f1.8
Camera, QHY9
Guiding, Meade LX200 GPS 12" and a Lodestar guider
Image Scale, ~5 arcseconds/pixel

Exposures
H-alpha 34x900s, Binned 1x1
H-alpha 14x1800s, Binned 1x1
H-alpha  42x1200s, binned 1x1
Total exposure time for Hydrogen alpha is 26h

O-III & S-II channels are from an older image,  exposure time 8h


Sunday, August 1, 2021

A new photo, Monkey Head Nebula, Lower's nebula, Jelly Fish nebula and Messier 35

 I shot material for this mosaic image at end of the spring season 2021. I haven't got time to finalize it until now. I kind of like this image, it's very deep and shows the very dim background mist and a very dense starfield of the galaxy plane. Total exposure time with Tokina AT-x 300mm f2,8 camera lens, Apogee u16 Astro camera and Astrodon narrowband filters is around 6 hours, the exposure time with Celestron Edge telescope is around 30 hours.

An other interesting feature in this imaging project is that I did use my VARES-processing method to this.
(Variable Resolution imaging) I have shot the nebulae in this wide field image with a long focal length instrument, the Celestron Edge 11" few years ago. I use this high res material to boost details in the wide field image. But that's not all!

I used the VARES technique to add deepness to my older long focal length images. I added the very dim background nebula data from wide filled images to long focal length images. The result was very good. Now all detailed features in the image, like stars, brighter nebula details and dark nebulae are form high res image data. The dim and relatively featureless data is taken from the wide field image. At the end the both datasets are combined by VARES-processing method to a one very deep and detailed image.


Monkey Head nebula. Messier 35 and the Jellyfish Nebula
Click for a large image!


Mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.


Wider mosaic, from Lower's Nebula to Jellyfish Nebula
Click for a large image! (2500 x 1100 pixels)

This mosaic image has 12 frames stitched together.


Labeled
Click for a large image!



Long focal length images boosted with a very deep wide field data.


Monkey Head nebula, NGC 2175
Click for a large image

The wide field data boosted long focal length image, original photo and details can be seen here, https://astroanarchy.blogspot.com/2015/03/ngc-2174-monkey-head-nebula-project.html
I think, this was a first image in the World showing the extremely dim lower part, "Teil of the Monkey", of the nebula.



Lower's Nebula, Sh2-261
Click for a large image

The wide field data boosted long focal length image, original photo and details can be seen here, https://astroanarchy.blogspot.com/2021/01/lowers-nebula.html


Jellyfish Nebula, the supernova remnant IC433
Click for a large image


The wide field data boosted long focal length image, original photo and details can be seen here, https://astroanarchy.blogspot.com/2015/01/jellyfish-nebula-ic-443-supernova.html




Wednesday, June 23, 2021

Photo number 8, The Chinese Dragon



Chinese Dragon, 
This is the only image in the World showing the constellation Cygnus so deep and detailed

Image is reduced to size of 2600 x 4200 pixels from the original 30.000 x 17.000 pixels. Click for a large image, it's worth it! Mosaic image was shot between September 2010 and December 2020


NEW, a Zoomable image




Click for a large image, area of interest ids marked as white rectangle


The Dragon, 4K-MOVIE
Duration ~one minute



About this photo

This photo means a lot to me personally. Not only due to large amount of work and time I spent with this area of sky, it also has a deeper meaning for me.

When you spent a decade working with a one photo to get it ready, it's like a long marriage. The passionate love is slowly turning to a deeper connection and at the end you'll grow together and can't live without the others company. As in marriage, during the years I have had friction in the relationship, even hate. But after desperate times the love always wins.

I'm a perfectionist, when dealing with my photography. This feature is essential  for a great results but it also can cause problems in relationship. There have been times when I almost get a divorce and started looking for another, easier target since I couldn't get out all of the extreme dim and difficult details I wanted to see and show. I didn't even know, if they are there since there wasn't any references to compare. I didn't give up and finally after long nights and hundreds of exposure hours I get what I was after. Now we can grow old together and I know for sure, I will always find something new and existing from my love one, the Chinese Dragon..

Total exposure time is way over 600 hours, they are shot between 2010 and 2020. Some areas of this mosaic panorama required more exposure time than others. There are two very diffused supernova remnants in this mosaic. Both are large and extremely dim. I have used about 170 hours of exposures for them alone! There aren't any deep and large enough photos around showing them well. 

I have started this imaging project back at 2010. My aim was to make a high resolution mosaic covering the whole constellation Cygnus. Work like that takes time and patience, especially since I have worked so, that many of the individual sub mosaics or frames can be published as an individual artworks. Here is a poster format presentation about all of the longer focal length images used for this mosaic beside longer focal length panels.

(3300 x 5500 pixels)

A location for each photo is marked at the older version of the mosaic image of the constellation Cygnus at center.


As a result I have now a huge 95 panel mosaic panorama covering 28 x 18 degrees of sky.  I have collected photons way over 600 hours during past ten years for this photo. The full size mosaic image has a size of about 25.000 x 15.000 pixels.

Two + one supernova remnants, two Wolf Rayet stars and a black hole

There are two large supernova remnants visible in this photo, first the Cygnus Shell W63 , bluish ring at upper left quarter, secondly the large SNR G65.3+5.7 at utmost right.
Just outside of the field of view lays the famous Veil Nebula SNR 
at bottom middle.

Beside two supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.

Next to the Tulip Nebula lays a Black hole Cygnus X-1.

Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this area of night sky is very inspiring There are endless amount of  amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.

Please, click the image for full resolution


Note. The third supernova remnant is marked at this image, it's just outside of the actual field of view. I left it out on purpose due to compositional reasons.


Technical details

Original resolution in pixels, 25.000 x 15.000

The NASA astronomer wrote about this image:

In brush strokes of interstellar dust and glowing gas, this beautiful skyscape is painted across the plane of our Milky Way Galaxy near the northern end of the Great Rift and the constellation Cygnus the Swan. Composed over a decade with 400 hours of image data, the broad mosaic spans an impressive 28x18 degrees across the sky. Alpha star of Cygnus, bright, hot, supergiant Deneb lies at the left. Crowded with stars and luminous gas clouds Cygnus is also home to the dark, obscuring Northern Coal Sack Nebula and the star forming emission regions NGC 7000, the North America Nebula and IC 5070, the Pelican Nebula, just left and a little below Deneb. Many other nebulae and star clusters are identifiable throughout the cosmic scene. Of course, Deneb itself is also known to northern hemisphere skygazers for its place in two asterisms, marking a vertex of the Summer Triangle, the top of the Northern Cross.

This is a large area of sky! (28 x 18 degrees) The mosaic photo is in mapped colours, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen. Image has over five million stars visible in it. 

I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set.
After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set. 
I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.


A  version of this photo was selected as an Astronomical Picture Of the Day by NASA


Mosaic panels in chronological order

Here is an image about individual panels shot for this large mosaic image.
There are 37 base panels with shorter focal length tools (200mm f2.8 Tokina and 200mm f1.8 Canon) There is also 59 sub-panels used, they are shot with my old 12" Meade and 11" Celestron Edge scopes.
Here is a poster format presentation and a list all of longer focal length images used for this mosaic beside the actual panels, https://astroanarchy.blogspot.com/2018/11/treasures-of-swan.html


Evolution of the mosaic between 2010 and 2020
Click for a large image


More info