COPYRIGHT, PLEASE NOTE
Monday, December 20, 2021
Cygnus mosaic gets large
The new composition is made so that the veil nebula supernova remnant fits to the field of view.
There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers.
I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. Least I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.
The previous version of this mosaic can be seen here, Great Mosaic of Cygnus
Three large supernova remnants in the same field of view
Click for a large image
ZOOMABLE VERSION
Click for a large image
Three large supernova remnants in constellation Cygnus, the Swan, are in image as colored circles
NOTE, there is an apparent size of the Moon as a scale at lower right corner in a grayscale image.
Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.
Next to the Tulip Nebula lays a Black hole Cygnus X-1, it's marked in small closeup image of the Tulip Nebula at center right in orientation image above.
Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.
Monday, December 13, 2021
The Pelican Nebula with new data
I originally publish this nebula image at December 2016. After that, I have shot some very high resolution material from the same area of sky and I decided to upgrade my old image with better data. I'm kind of happy with the result, especially the details in dark nebulae are much sharper now and shows the complex structures of unionized gas and dust. Main reason is the long exposure time used, for H-alpha alone, there are 30 hours of exposures. Total exposure time is around 60 hours.
The dark nebula in the upper part of the photo is the gas bridge splitting visually the Pelican Nebula and the North America nebula so that the they look like two separate nebula. In reality they are actually a one large emission area.
Zoomable Image
Wednesday, November 24, 2021
Grand Mosaic of the Milky Way is now large than ever
The new panorama image was published today in Finnish Tähdet ja Avaruus Magazine
This and other of my astronomical photographs can be seen in my NIGHT FEVER exhibition in Helsinki.
The Grand Mosaic of the Milky Way Galaxy II
This is the only photo in the World showing the Northern Milky Way so deep and detailed, now it's large than ever!
Click for a large image, 7000 x 1150 pixels
NOTE, image of the Full Moon as a scale in lover left corner.
NOTE, all material in this blog is under copyright, any kind of usage without authors permission is forbidden.
- Panorama spans 145 x 22 degrees of sky (Full Moon covers 0,5 degrees of sky)
- Resolution 120.000 x 18.000 pixels
- Photos has 2.2 gigapixels in it, the spatial resolution is equal to 8.8 gigapixel image from color camera since all the channels are in native resolution.
- There are least nine confirmed supernova remnants in this panorama
- About 25 million stars are visible in the photo
- Distance to the nebulae in the image between 350 to 20.000 light years
- Exposure time over 1500 hours between 2009 - 2021
- 301 individual images are stitched together seamlessly
- It took about 12 years to finalize this photo
- Narrowband image from light of ionized elements, hydrogen = green, sulfur = red and oxygen = blue
- Processing time for the whole panorama, way too large part of my life
Click for a large image
NOTE, all material in this blog is under copyright, any kind of usage without authors permission is forbidden.
11500 x 3400 pixels
The reason I keep doing my slow work is an endless
curiosity, I love to show how wonderful our world really is. That's how I feel at front of
everything I'm able to see through my photography.
Photographed area of sky is showing a large part of Northern Milky Way in high resolution. Beside the size, it's very deep, meaning that it shows extremely dim and unimaged nebulae across the galaxy plane. One of the reasons for this massive panorama project was a fact, that there was no such an image anywhere in the world. I had personal need for the photo like this since I wanted to use it as a map to the new adventures.
Revealing the hidden beauty of our universe is my passion. I stand in rapt adoration before all that I see. When art meets science, the results can be quite mind-blowing.
Astronomical
photography is a very time-consuming process. If I want to have a color image,
I have to shoot each target least three times through a different filter to
have all three-color channels needed for color image. Also, the exposure times
can be very long, in my case even hundreds of hours for some very dim
objects. An average exposure time is around 25 hours per image. Also everything has
to be carefully pre planned.
I made imaging plans over ten years ago, I
wrote first ideas about this imaging project to my little black Moleskin
notebook. I was aware at the time, that it will take a decade to be
finalized but it doesn't bother me since I love long projects, they are
giving a purpose and the goal to my work as an artist.
I needed to develop many new working
methods to be able to control this massive project. I needed to get them ready
first since ones started, the project can't be changed anymore without
canceling it. Everything needs to be spot on, the planning of composition and
its relation to the Milky Way objects, many technical aspects, like how to
handle a data from different optics with a different spatial resolution etc. I
won't go very deep into technical details, since the complex technique needed
is just a tool to make my art.
you must be able to get along with them too. I felt like that, when I was stitching pieces
together and some of them didn't fit the way I wanted and I had to reshoot them. That easily took months, or years. but at the end, everything slides together smoothly without any visible seams.
I'm a perfectionist, when dealing with my photography. This feature is essential for the great results but it also can cause problems. This photo could be ready maybe five years earlier, if I could leave some extremely dim targets out or leave them less detailed but I simply couldn't do that. When the photo was ready, I didn't remember all of those sleepless cold nights, I remembered the joy I felt when the most difficult parts got ready.
NOTE, all material in this blog is under copyright, any kind of usage without authors permission is forbidden.
Step 3,
2019 -2021, SOLVING THE BIG PUZZLE
Finally at 2019, after so many years, I had enough material to start
working with the final mosaic image. The work took about two years due to
complex mosaic structure and massive amount of image material. I also
needed to shoot lots of missing material for the mosaic at the same time.
I used the Cartes du Ciel, a star map software, for planning and a
preliminary fit the individual frames.
Click for a large image
AND FINALLY
At October 2021, after 12 years, 1500 hours of exposures and countless hours of work
The Grand Mosaic of the Milky Way Galaxy II
NOTE, all material in this blog is under copyright, any kind of usage without authors permission is forbidden.
Getting to a last piece of the puzzle is always a thrilling process. Many
of us know, how frustrating it can be to notice, that one piece is missing. That's
happened to me too. I was sure that I shot the piece about three years ago
but couldn't find it anywhere from my hard drives. As a result, I had to wait
several extremely long weeks to be able to reshoot the missing piece to get
this massive puzzle finalized.
The Great Wall of Cygnus
Due to very cloudy weather I have remade some of my older photos, this time the Cygnus Wall has been remade. This is a combination of several older images from 2008, 2010 and 2014. Two different longer focal length telescope was used, The Meade LX200 GPS 12" and Celestron Edge 11". Beside long focal length images material from shorter focal length optics was used from the Canon EF 200mm f1,8 and Tokina AT-x 300mm f2.8 camera optics. Older material was taken with the QHY9 astro camera and after 2014 Apogee Alta U16 camera was used. Total exposure time is around 30 hours.
Click for a large image

Mapped colors from an emission of the ionized elements, Red=Sulfur, Green=Hydrogen and the Blue =Oxygen.
Wider field
Click for a large image
Wednesday, November 10, 2021
NIGHT FEVER, exhibition in Helsinki 14.10 - 04-12. 2021
NIGHT FEVER
THE PLATFORM GALLERY
Lapinlahdenkatu 16 C, 00180 Helsinki
The exhibition will be open in the the evenings to highlight the
beauty and mystique of the cosmos.
Opening hours
Wed - Fri: 5pm to 9pm
Sat: 2pm to 8pm
We are also open on select Sundays and Holidays and
outside opening hours by appointment
Tuesday, October 12, 2021
Night Fever, Exhibition in Helsinki 14.10 - 04.12. 2021
NIGHT FEVER
EXHIBITION 14.10 - 04.12.2021, THE PLATFORM GALLERY
Lapinlahdenkatu 16 C, 00180 Helsinki
NIGHT FEVER" WILL BE OPEN IN EXHIBITION AT THE PLATFORM GALLERY IN HELSINKI FROM 14.10 - 4.12.2021
The exhibit will be open in the the evenings to highlight the
beauty and mystique of the cosmos.
Thursday to Saturday of the opening days will have special opening hours.
14.10 - 16.10
7pm to 10pm
General Opening hours Starting 20.10
Wed - Fri: 5pm to 9pm
Sat: 2pm to 8pm
We are also open on select Sundays and Holidays and
outside opening hours by appointment
NOTE
A three meter long museum quality print of Grand Mosaic of Milky Way is one of the artworks in exhibition.
Thursday, October 7, 2021
Filaments of Veil in mapped colors
I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. A version in visual color palette can be seen here, https://astroanarchy.blogspot.com/2021/09/filaments-of-veil-nebula-snr.html
Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo.
Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.
Click for a large image
Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality.
Wednesday, October 6, 2021
Unveiling The Veiled
The Veil nebula supernova remnant in Cygnus. Original image was shot with the Canon EF 200 mm f1.8 camera optics full open, QHY9 astro camera and Baader narrowband filters at 2013.
New data is shot with Tokina 300mm f2.8 camera optics and Celestron Edge HD 11" telescope, Apogee Alta U16 astro camera with Astrodon narrowband filters between 2016 - 2020
Total exposure time is now about 45 hours.
The Veil nebula @SuperRare auction
Animation, https://superrare.com/artwork-v2/unveiling-the-veiled-volume-29145
Photo, https://superrare.com/artwork-v2/unveiling-the-veiled-29137
Veil nebula Unveiled
Click for a large image, 1250 x 1700 pixels
Nebula in visual colors from light emitted by an ionized elements can be seen here,
https://astroanarchy.blogspot.com/2021/09/veil-nebula-unveiled-ii.html
Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality.
INFO
How the 3D-model is made
My Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D
Monday, October 4, 2021
Three 3D-conversions out of my astronomical photos
I have made dozens of 3D-conversions out of my astronomical photos. As an artist I like to find a new views to the reality. My models are not just a guesswork, the conversion is based on real scientific data.
At the end of this blog post there is a short explanation, how I do my conversion work.
Original astronomical photo about part of the Veil nebula SNR in O-III light only.
3D-study of Veil Nebula Photo
How 3D-models are madeMy Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D
How accurate my 3-D-visions are depending on how much information I have and how well I implement it.
The final 3-D-image is always an appraised simulation of reality based on known scientific facts, deduction, and some artistic creativity.
After I have collected all the necessary scientific information about my target, I start my 3-D conversion from stars. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can locate the correct number of stars in front of it and behind it.
Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud and the nebula itself is glowing light, the principle is very much the same as in fluorescent tubes. The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker.
By this means, forms of the nebula can be turned to a real 3-D shape. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.
The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The same stellar wind also initiates the further collapse of the gas cloud and the birth of the second generation of stars in the nebula. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.
Ionized oxygen (O-III) glows with a bluish light, and since oxygen needs a lot of energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.
Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission one, otherwise we couldn’t see it at all.
Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale
Thursday, September 30, 2021
Filaments of Veil Nebula SNR
I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. An older mapped color version can be seen here, https://astroanarchy.blogspot.com/2016/12/filaments-of-veil-nebula.html
Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo.
Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.
A closeup
Click for a large image
Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality. More info about my 3D-technique at end of this blog post: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html
NOTE. It looks like that the animation has less stars, than the original 2d-image. That's not true, stars is normal photo are getting projected to a same plane. In 3D-model stars are in volume and it only looks like, that there are less stars.