COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

BUY A MUSEUM QUALITY POSTER

Wednesday, February 23, 2022

Super Zoom to my photo, the Grand Mosaic of the Milky Way Revision 2




4K Super Zoom to my photo
Grand Mosaic of the Milky Way Revision 2

Super Zoom to the Milky Way, note, best to see in full screen

It took over 12 years to finalize this massive photo of Milky Way
Blog post with a zoomable image, please, have a look here: https://astroanarchy.blogspot.com/2021/10/grand-mosaic-of-milky-way-is-now-large.html

IMAGE SPECS
  • Panorama spans 145 x 22 degrees of sky (Full Moon covers 0,5 degrees of sky)
  • Resolution 120.000 x 18.000 pixels
  • Photos has 2.2 gigapixels in it, the spatial resolution is equal to 8.8 gigapixel image from color camera since all the channels are in native resolution.
  • There are least nine confirmed supernova remnants in this panorama
  • About 25 million stars are visible in the photo
  • Distance to the nebulae in the image between 350 to 20.000 light years
  • Exposure time over 1500 hours between 2009 - 2021
  • 301 individual images are stitched together seamlessly 
  • It took about 12 years to finalize this photo
  • Narrowband image from light of ionized elements,    hydrogen = green, sulfur = red and oxygen = blue
  • Processing time for the whole panorama, way too large part of my life



Monday, February 14, 2022

Supernova remnant HB3 and the cosmic heart

 I have shot this target originally at January 14 2020 and it was the second light to my modified Tokina lens. Now I have reprocessed the data and I do like this result much better.

 new imaging system based on Tokina AT-x 300mm f2.8 camera lens.


The Heart Nebula, IC 1805
Please, click for a large image

Going very deep just in two hours! Image is in visual color palette from emission of an ionized hydrogen and oxygen. R=hydrogen, G=Oxygen and B=oxygen. I have made a starless version out of this image, it can be seen here, https://astroanarchy.blogspot.com/2020/01/an-animated-heart-nebula-ic1805805-with.html



SUPERNOVA REMNANT 132.7+1.3 (HB3)
IC 1805 in visual palette
Please, click for a large image


Supernova remnant

In this photo there is a large supernova remnant, marked as a white circle. I haven't seen any photos of it before. I must take more O-III exposures to see, if I'm able to pick up any signal from this supernova remnant. 

Radio image of the area shows mostly signal from OB6


SNR 132.7+1.3 at upper right. Source and more information, http://galaxymap.org/drupal/node/103


Technical details

Processing workflow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Tokina AT-x 300mm f2.8 camera lens

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200

Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time
H-alpha, 12 x 600 s, binned 1x1 = 2 h
O-III, 3x 600 s, binned 1x1 = 30 min..
S-II, 2x1200 s, binned 2x2 = 40 min.

INFO About undersampling etc

The CCD I'm using has kind of large pixels, 9 microns, so I'm undersampled, the image scale is almost 5 arc seconds / pixel. Undersampling is not a bad thing when my targets are large and dim nebula complexes. This system collects photons very fast!

I selected the Heart Nebula as a target since I have plenty of reference material for it. Another reason is interesting and rarely imaged area after the bright tip of the heart. There are some remnants of a supernova explosion. I was really thrilled, when I saw the final stack of 12 600s H-alpha light frames. (Equal to 2h of exposures) I never have seen so much background nebulae and details from this popular target.
Beside 2h of H-alpha (Light from an ionized hydrogen) I shot 30 min of O-IIII (Light from an ionized Oxygen) To be able to make an image in visual palette.

Wednesday, January 5, 2022

Cygnus Mosaic in Visual Colors

 Three Musketeers of Swan 

Deepest and most detailed image showing the whole constellation Cygnus ever taken

There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers. 

I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.

The mapped color version  of this mosaic can be seen here, https://astroanarchy.blogspot.com/2021/12/cygnus-mosaic-gets-large.html

Bang, Bang & Bang
Three large supernova remnants in the same field of view
Click for a large image

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.

ZOOMABLE VERSION



Three Large Supernova Remnants
Click for a large image

Locations and names of the supernova remnants

INFO

Three supernova remnants, two Wolf Rayet stars and a black hole

In the orientation image above, there are three large supernova remnants visible, first the Cygnus Shell W63 , bluish ring at middle left, secondly the large SNR G65.3+5.7 at upper right and the third is a brighter SNR, the Veil nebula at right edge of the image.

Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.

Next to the Tulip Nebula lays a Black hole Cygnus X-1

Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of  amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.

Equipments used

I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set. After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set. I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.

Monday, December 20, 2021

Cygnus mosaic gets large

 Three Musketeers of Swan 
Deepest and most detailed image showing the whole constellation Cygnus ever taken

The new composition is made so that the veil nebula supernova remnant fits to the field of view.
There are three large supernova remnants visible in this image. The Veil nebula is the most bright of them, other two are really dim and diffused. I spent about 200 exposure hours for those two alone to show them well. I call this trio to the Three musketeers

I like the new composition, it's very dynamic and shows the whole constellation Cygnus first time ever at this detail level and deepness. Least I haven't seen anything like this before. Image spans now 31 x 23 degrees of sky and has 118 individual frames in it. total exposure time is now around 700 hours and the resolution 20.000 x 25.500 pixels. Image it took over a decade to finalize this photo between 2010 and 2021.

The previous version  of this mosaic can be seen here, Great Mosaic of Cygnus  

Bang, bang & bang
Three large supernova remnants in the same field of view
Click for a large image

This is a large area of sky, it spans 31 x 23 degrees of sky. Image is in mapped colors, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen.  



ZOOMABLE VERSION

Image is reduced to 6000 x 7700 pixels size from the original 20.000 x 25.500 pixels.


118 Mosaic Panels
Click for a large image

All the 112 frames used are shown in this image. Since many of the frames are originally shot as independent artworks, panel structure is very complex. Also different instruments has a different field of view and resolution, so mosaic panels are at three different size.   


DETAILS
Click for a large image


Three large supernova remnants in constellation Cygnus, the Swan, are in image as colored circles
NOTE, there is an apparent size of the Moon as a scale at lower right corner in a grayscale image.



INFO

Three supernova remnants, two Wolf Rayet stars and a black hole

In the orientation image above, there are three large supernova remnants visible, first the Cygnus Shell W63 , bluish ring at middle left, secondly the large SNR G65.3+5.7 at upper right and the third is a brighter SNR, the Veil nebula at right edge of the image.

Beside three supernova remnants there are two Wolf Rayet stars with outer shell formations. NGC 6888, the Crescent Nebula at center of the image and the WR 134, it can be seen as a blue arch just right from the Crescent Nebula, near the Tulip nebula.

Next to the Tulip Nebula lays a Black hole Cygnus X-1, it's marked in small closeup image of the Tulip Nebula at center right in orientation image above. 

Constellation Cygnus is an endless source of celestial wonders, both scientifically and aesthetically. For me, as an visual artist, this are of night sky is very inspiring There are endless amount of  amazing shapes and structures, I can spend rest of my life just shooting images from this treasury.

Equipments used

I have used several optical configurations for this mosaic image during the years. Up to 2014 I was using an old Meade LX200 GPS 12" scope, QHY9 astrocam, Canon EF 200mm f1.8 camera optics and baader narrowband filter set. After 2014 I have had 10-micron 1000 equatorial mount, Apogee Alta U16 astro camera, Tokina AT-x 200mm f2.8 camera lens and the Astrodon 50mm square narrowband filter set. I have shot many details with a longer focal length, before 2014 by using Meade 12" scope with reducer and after 2014 Celestron EDGE 11" and reducer. Quider camera has been Lodestar and Lodestar II.

Monday, December 13, 2021

The Pelican Nebula with new data

 I originally publish this nebula image at December 2016. After that, I have shot some very high resolution material from the same area of sky and I decided to upgrade my old image with better data. I'm kind of happy with the result, especially the details in dark nebulae are much sharper now and shows the complex structures of unionized gas and dust. Main reason is the long exposure time used, for H-alpha alone, there are 30 hours of exposures. Total exposure time is around 60 hours.

The dark nebula in the upper part of the photo is the gas bridge splitting visually the Pelican Nebula and the North America nebula so  that the they look like two separate nebula. In reality they are actually a one large emission area.

Pelican Nebula, constellation Cygnus, the Swan
Click for a large image

Image is in mapped colours, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen. 
The older version of this image can be seen here: https://astroanarchy.blogspot.com/2016/12/pelican-nebula-two-frame-mosaic.html


Zoomable Image




Orientation in large context

The North America Nebula can be seen at upper part of the image




Wednesday, November 24, 2021

The Great Wall of Cygnus

 Due to very cloudy weather I have remade some of my older photos, this time the Cygnus Wall has been remade. This is a combination of several older images from 2008, 2010 and 2014. Two different longer focal length telescope was used, The Meade LX200 GPS 12" and Celestron Edge 11". Beside long focal length images material from shorter focal length optics was used from the Canon EF 200mm f1,8 and Tokina AT-x 300mm f2.8 camera optics. Older material was taken with the QHY9 astro camera and after 2014 Apogee Alta U16 camera was used. Total exposure time is around 30 hours.

The Great Wall of Cygnus
Click for a large image 


Mapped colors from an emission of the ionized elements, Red=Sulfur, Green=Hydrogen and the Blue =Oxygen.


 Wider field
Click for a large image 




Zoomable Photo




Info about imaging technique

I have used my new processing/imaging technique VARES for this new composition (VAriable Resolution Imaging) It's really powerful toolset when data from very different focal lengths are combined to a single high resolution image. The principle is that the high signal/noise elements are from the long focal length instruments and the low signal/noise data from the short focal length optics is used to boost relatively featureless and very dim image elements. 


Orientation in North America and Pelican nebula complex



Wednesday, November 10, 2021

NIGHT FEVER, exhibition in Helsinki 14.10 - 04-12. 2021


NIGHT FEVER
THE PLATFORM GALLERY

Lapinlahdenkatu 16 C, 00180 Helsinki 


The exhibition will be open in the the evenings to highlight the

beauty and mystique of the cosmos.

Opening hours

Wed - Fri: 5pm to 9pm
Sat: 2pm to 8pm

We are also open on select Sundays and Holidays and
outside opening hours by appointment

This photograph of Melotte 15 star cluster in Cassiopeia can be seen in exhibition as a museum quality print on dibond-aluminium at size 120 x 97 cm.



Tuesday, October 12, 2021

Night Fever, Exhibition in Helsinki 14.10 - 04.12. 2021


NIGHT FEVER

EXHIBITION 14.10 - 04.12.2021, THE PLATFORM GALLERY

Lapinlahdenkatu 16 C, 00180 Helsinki

NIGHT FEVER" WILL BE OPEN IN EXHIBITION AT THE PLATFORM GALLERY IN HELSINKI FROM 14.10 - 4.12.2021

The exhibit will be open in the the evenings to highlight the
beauty and mystique of the cosmos.

Thursday to Saturday of the opening days will have special opening hours.

14.10 - 16.10
7pm to 10pm

General Opening hours Starting 20.10

Wed - Fri: 5pm to 9pm
Sat: 2pm to 8pm

We are also open on select Sundays and Holidays and
outside opening hours by appointment

NOTE

A three meter long museum quality print of Grand Mosaic of Milky Way is one of the artworks in exhibition.


Thursday, October 7, 2021

Filaments of Veil in mapped colors

 I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. A version in visual color palette can be seen here,  https://astroanarchy.blogspot.com/2021/09/filaments-of-veil-nebula-snr.html

Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo. 

Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.

Filaments of central veil
Click for a large image (1100 x 2900 pixels)

Image is in mapped colors, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen


A closeup
Click for a large image

The Pickering's Triangle part of the Veil Nebula


Orientation
Click for a large image


INFO

Since all of the heavier elements are born in exploding stars, we all are children of supernovae. Veil Nebula is located in the constellation Cygnus at a distance of 1500 light-years. It spans three degrees of sky, (Moon has an angular diameter of 0,5 degrees at the sky) real diameter is around 70 light-years. I collected data for the photo between 2012-2020 and I made this 3D model in 2021,exposure time is 45 hours

A 3D-study of Veil nebula SNR
3D-study of Veil Nebula Photo


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality.

INFO About my 3D-transformation technique and large animation here: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html





Wednesday, October 6, 2021

Unveiling The Veiled

The Veil nebula supernova remnant in Cygnus. Original image was shot with the Canon EF 200 mm f1.8 camera optics full open, QHY9 astro camera and Baader narrowband filters at 2013.

New data is shot with Tokina 300mm f2.8 camera optics and Celestron Edge HD 11" telescope, Apogee Alta U16 astro camera with Astrodon narrowband filters between 2016 - 2020
Total exposure time is now about 45 hours.

The Veil nebula @SuperRare auction 
Animation,
 https://superrare.com/artwork-v2/unveiling-the-veiled-volume-29145
Photo, https://superrare.com/artwork-v2/unveiling-the-veiled-29137

Veil nebula Unveiled

Click for a large image, 1250 x 1700 pixels

A very deep image of the veil nebula supernova remnant in mapped colors.
Nebula in visual colors from light emitted by an ionized elements can be seen here,
https://astroanarchy.blogspot.com/2021/09/veil-nebula-unveiled-ii.html

3D-study of Veil Nebula Photo


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality.

INFO


Since all of the heavier elements are born in exploding stars, we all are children of supernovae. Veil Nebula is located in the constellation Cygnus at a distance of 1500 light-years. It spans three degrees of sky, (Moon has an angular diameter of 0,5 degrees at the sky) real diameter is around 70 light-years. I collected data for the photo between 2012-2020 and I made this 3D model in 2021,exposure time is 45 hours

How the 3D-model is made


My Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D


For as long as I have captured images of celestial objects, I have always seen hem three-dimensionally in my head. The scientific information makes my inner visions much more accurate, and the 3-D technique I have developed enables me to share those beautiful visions with others.

How accurate my 3-D-visions are depending on how much information I have and how well I implement it.

The final 3-D-image is always an appraised simulation of reality based on known scientific facts, deduction, and some artistic creativity.

After I have collected all the necessary scientific information about my target, I start my 3-D conversion from stars. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can locate the correct number of stars in front of it and behind it.

Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud and the nebula itself is glowing light, the principle is very much the same as in fluorescent tubes. The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker.

By this means, forms of the nebula can be turned to a real 3-D shape. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.

The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The same stellar wind also initiates the further collapse of the gas cloud and the birth of the second generation of stars in the nebula. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.

Ionized oxygen (O-III) glows with a bluish light, and since oxygen needs a lot of energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.

Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission one, otherwise we couldn’t see it at all.

Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale

3D-model without textures







Monday, October 4, 2021

Three 3D-conversions out of my astronomical photos

 I have made dozens of 3D-conversions out of my astronomical photos. As an artist I like to find a new views to the reality. My models are not just a guesswork, the conversion is based on real scientific data.
At the end of this blog post there is a short explanation, how I do my conversion work.


Veil nebula in O-III light alone

Original astronomical photo about part of the Veil nebula SNR in O-III light only.

3D-study of Veil Nebula Photo






NGC1499 the California Nebula

My photo of California Nebyla in mapped colors


3D-study of California Nebula Photo







Bubble Nebula

My photo of Bubble Nebula in mapped colors


3D-study of Bubble Nebula Photo




How 3D-models are made

My Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D


For as long as I have captured images of celestial objects, I have always seen hem three-dimensionally in my head. The scientific information makes my inner visions much more accurate, and the 3-D technique I have developed enables me to share those beautiful visions with others.

How accurate my 3-D-visions are depending on how much information I have and how well I implement it.

The final 3-D-image is always an appraised simulation of reality based on known scientific facts, deduction, and some artistic creativity.

After I have collected all the necessary scientific information about my target, I start my 3-D conversion from stars. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can locate the correct number of stars in front of it and behind it.

Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud and the nebula itself is glowing light, the principle is very much the same as in fluorescent tubes. The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker.

By this means, forms of the nebula can be turned to a real 3-D shape. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.

The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The same stellar wind also initiates the further collapse of the gas cloud and the birth of the second generation of stars in the nebula. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.

Ionized oxygen (O-III) glows with a bluish light, and since oxygen needs a lot of energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.

Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission one, otherwise we couldn’t see it at all.

Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale

3D-model without textures

Thursday, September 30, 2021

Filaments of Veil Nebula SNR

 I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. An older mapped color version can be seen here, https://astroanarchy.blogspot.com/2016/12/filaments-of-veil-nebula.html

Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo. 

Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.

Filaments of central veil
Click for a large image (1100 x 2900 pixels)


Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.

A closeup
Click for a large image




Orientation
Click for a large image


 

Unveiling the Veiled


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality. More info about my 3D-technique at end of this blog post: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html

NOTE. It looks like that the animation has less stars, than the original 2d-image. That's not true, stars is normal photo are getting projected to a same plane. In 3D-model stars are in volume and it only looks like, that there are less stars.





Tuesday, September 28, 2021

Veil nebula unveiled II

 I haven't start the imaging season yet, up here 65N. Nights are still short and I haven't got my imaging rig ready after the mandatory six months Summer break.

I have reprocessed some older shots with new data, this time the Veil nebula supernova remnant in Cygnus. Original image was shot with the Canon EF 200 mm f1.8 camera optics full open, QHY9 astro camera and Baader narrowband filters at 2013.

New data is shot with Tokina 300mm f2.8 camera optics and Celestron Edge HD 11" telescope, Apogee Alta U16 astro camera with Astrodon narrowband filters.
Total exposure time is now about 45 hours. I published yesterday a Pickering's Triangle photo taken with Celestron Edge HD 11"-. It's part of this new image among other.


Veil nebula Unveiled
Click for a large image, 1250 x 1700 pixels

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.


A Closeup
Click for a large image





An older image from 2013 can be found here,
https://astroanarchy.blogspot.com/2013/12/veil-nebula-unveiled.html







Monday, September 27, 2021

Pickering's Triangle in Visual palette

 I have reprocessed some older data and made a new composition out of it. Pickering's Triangle is part of the Veil nebula supernova remnant in constellation Cygnus. It has an amazing structure of complex gas filaments. This image is one of the most detailed presentations, showing the whole triangle shape formation, I have seen so far.

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission. (H-beta and H-alpha has a same shape but H-beta is weaker. H-alpha emits red light and H-beta emits blue light.) Exposure time ~20 hours.
here you can see ta mapped color image from same data, https://astroanarchy.blogspot.com/2021/08/pickerings-triangle-reprocessed-with.html


Pickering's Triangle with some new lights
click for a large image

Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.


A Closeup
click for a large image

The complex structure of gas filaments 


Orientation in Veil nebula SNR
click for a large image




Technical details

Processing work flow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 33% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2 and SXV-AOL

Astrodon filter, 5nm H-alpha
Astrodon filter, 3nm O-III
Astrodon filter, 3nm S-II

Exposure times
H-alpha, 15 x 1200s = 5h
O-III, 36 x 1200s binned = 12h (Autumn 2014)
S-II,  from my older wide field photo of the Veil Nebula = 3h 
Total 20h




Tuesday, September 21, 2021

Supernova Remnant Simeis 147, new data added

 I have made a new version of my NASA APOD and National Geographic Image of the Week photo. Simeis 147 is a large and very dim supernova remnant in constellation Taurus.

I combined an old data with a new data, with different optics and camera, together.
As a result I have more details, vivid colors and better overall signal in the new photo. An
older photo is from 2011 and the new photo from 2020. Total exposure time in this new composition is over 45 hours.


Simeis 147 SNR
Click for a large image, 1700 x 1200 pixels

Image is in mapped colors, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen


An Experimental Starless Version

Actual filaments of the supernova remnant can be seen better in this starless version.

A Closeup




Photo in Visual palette



INFO

Simeis 147 (sharpless 240), is a very faint and large supernova remnant in constellation Taurus at distance of ~3000 light years. It's constantly expanding at speed of 1000 km/second but due the size of it, we can't see any movement in it. This SN spans over 160 light years and the apparent scale in the sky is about three degrees (Moon has an apparent size of 30" = 0,5 degrees).  Explosion took place approximately 30.000 years ago  and left behind a  pulsar (Neutron star). The pulsar has recently identified.

How long it'll takes to this supernova remnant to expand 1% large when the diameter is 160 light years and it expands at speed of 1000 km/second.
Answer is ~480 years.
 (1% of diameter 160/100= 16, as kilometers ~151.372.800.000.00, = Y, km,
1000 km/second is ~315.360.000.00, = Z, kilometers/year.
So, X x Z = Y and  X=Z/Y,    X = 480 years with given values)


SOMETHING DIFFERENT!

This artwork belongs to my VISION Series, the image is made out of my original photo of starless Simeis 147 supernova remnant.

Every single element in Vision series photos are from my original astronomical photos. I have been using the Overlapping Lightning Method (Multi Exposure Method) to create my Vision series photographs. By this method the forms and structures in astronomical object get multiplied, they are now forming a new visual dimension beyond our physical universe.





Closeup


Artworks are made purely out of starless Simeis 147 image.



Technical Details


Photo from 2020

Processing workflow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200
Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time
H-alpha, 15 x 1200 s, binned 1x1 = 5 h
O-III, 24x 600 s, binned 2x2 = 4 h
S-II, 1 x 12 x 600 s. binned 2x2 = 2 h

Photo from 2011

Processing work flow:
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Levels, curves and color combine in PS CS3.

Optics, Canon EF 200mm camera lens at f1.8
Camera, QHY9
Guiding, Meade LX200 GPS 12" and a Lodestar guider
Image Scale, ~5 arcseconds/pixel

Exposures
H-alpha 34x900s, Binned 1x1
H-alpha 14x1800s, Binned 1x1
H-alpha  42x1200s, binned 1x1
Total exposure time for Hydrogen alpha is 26h

O-III & S-II channels are from an older image,  exposure time 8h