COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

BUY A MUSEUM QUALITY POSTER

Thursday, December 19, 2024

Pansy of the Swan, Sharpless 112

 My previous image was showing the Sharpless 115 an emission nebula area in Cygnus, just next to it lays another Sharpless catalog target, Sh2-112.

My new photo about Sh2-112 has O-III and S-II data from my older image of Sharpless 112 from the October 2015. The new H-alpha data is much deeper and has a higher resolution.  For some reason, this target has always been very difficult to process. Details in a background are very diffused and the actual emission nebula has a vast dynamic range, from a very bright to a very dim features. 

I renamed this target to a "Pansy of the Swan" since the bright nebula looks like a blooming yellow pansy.

Sahrpless112, Pansy of the Swan
Click for a full size photo, 2000x2000 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue

200% Enlarged Portion of the Photo and a Baby Fox
Click for a full size, 2000x2000 pixels







INFO

 Sharpless 112 (Sh2-112) lays in the Cygnus, the area rich in Ha, approximately 5000 light years away. Its location is full of faint nebulosity, as seen in the background of my photo. The nebula is energized by a hot, young star, BD +45 3216, which emits large amounts of UV light causing the gases to glow light. 



Sharpless 112 in visual colors
Click for a full size photo, 2000x2000 pixels

Visual color version of Sh2-115 glows mostly in red from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.


Sh2-112 in a large context
Please, click for a large image, NOTE. 4000x5000 pixels


Sharpless 155 is marked with a white rectangle at lower left.
This is my very large mosaic photo of the whole Cygnus, more info about this massive photo


Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 13h
H-alpha, 18 x 1200 s, binned 1x1 = 6 h
O-III,12x 1200 s, binned 2x2 = 4h 
S-II, 9 x 1200 s. binned 2x2 = 3h

A single calibrated 20 min exposure of H-alpha, Bin 1x1
 Click for a full size image.



Sunday, December 15, 2024

New Photo, Sharpless 115 in Cygnus

This Portion of sky covers less than a square degrees of sky in Constellation Cygnus, the Swan.
This star nursery has always looked to me like like it was cut out of the Baroque painting.

I was able to shoot a high resolution data for it with my new imaging setup. The Celestron Edge 14". This telescope has a beautiful optics and with a secondary mirror focuser, it'll hold the collimation perfectly all the time. Normally the heavy main mirror is used for focusing and it can be source of optical problems when it moves due to gravity when the scope is moving and pointing to a different portions of sky.


BAROQUE SKY OF SHARPLESS 115
Click for a full size photo, 2000x2000 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue



200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels




INFO

 Sharpless 115 stands just north and west of Deneb, the alpha star of Cygnus, the Swan, in planet Earth's skies. Noted in the 1959 catalog by astronomer Stewart Sharpless (as Sh2-115) the faint but lovely emission nebula lies along the edge of one of the outer Milky Way's giant molecular clouds, about 7,500 light-years away.

Shining with the light of ionized atoms of hydrogen, sulfur, and oxygen in this Hubble palette color composite image, the nebular glow is powered by hot stars in star cluster Berkeley 90. The cluster stars are likely only 100 million years old or so and are still embedded in Sharpless 115. But the stars' strong winds and radiation have cleared away much of their dusty, natal cloud. At the emission nebula's estimated distance, this cosmic close-up spans just under 100 light-years.

Source: NASA APOD

Sharpless 115 in visual colors
Click for a full size photo, 2000x2000 pixels

Visual color version of Sh2-115 glows mostly in red from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.




Sh2-115 in a large context
Please, click for a large image, NOTE. 4000x5000 pixels

Sharpless 155 is marked with a white rectangle at lower left.
This is my very large mosaic photo of the whole Cygnus, more info about this massive photo


Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 12h
H-alpha, 18 x 1200 s, binned 1x1 = 6 h
O-III,9x 1200 s, binned 2x2 = 3h 
S-II, 9 x 1200 s. binned 2x2 = 3h


A single calibrated 20 min exposure of H-alpha, Bin 1x1
 Click for a full size image.






Monday, December 9, 2024

Wizard Nebula, NGC 7380

 My new setup has a long focal length optics, Celestron EDGE 14", after years of shooting the wider field astronomical photos, it's very nice to dig in to the details of those cosmic wonders.

My new photo shows the Wizard nebula in Cepheus, I have shot this target many times with a various optical configurations. The combination of 14" telescope and large 12 micron pixels of my "new" second hand camera, Apogee Alta U9000M, delivers an optimal resolution to my seeing conditions (0.91 arcsecond/pixel). This makes possible to go very deep in relatively short cumulative exposure time, as can be seen in this photo. A dim background nebulosity stand out nicely after about six hours of H-alpha exposures. 

WIZARD OF CEPHEUS
Click for a full size photo, 2000x2000 pixels

A mapped color image from a light emitted by an ionized elements, 
sulfur=red, hydrogen=green and oxygen=blue



The Wizard, as I see it
Click for a full size photo, 2000x2000 pixels



INFO

NGC 7380, the Wizard Nebula, locates in constellation Cepheus at distance of about 8500 light years from us. The Nebula surrounds an open star cluster NGC 7380. Stars, gas, and dust has created a shape that appears to some like a fictional medieval sorcerer. The active star forming region spans about 100 light years, making it appear larger than the angular extent of the Moon. The Wizard Nebula can be located with a small telescope toward the constellation of the King of Aethiopia (Cepheus). 



WIZARD IN VISUAL COLORS
Click for a full size photo, 2000x2000 pixels

Visual color version from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue, this combination is very close to a natural color palette.




200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels



Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, 
Celestron EDGE 14" with 0.7 Focal reducer

Mount, 
MesuMount Mark II

Cameras, 
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, 
Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 12h
H-alpha, 18 x 1200 s, binned 1x1 = 6 h
O-III,9x 1200 s, binned 2x2 = 3h 
S-II, 9 x 1200 s. binned 2x2 = 3h

A single, full scale, 20 min H-alpha exposure, Bin 1x1
 Click for a full size image.








Thursday, November 28, 2024

Beauty and the Beast, Tulip Nebula and a Black Hole

I started to collect exposures for this photo back in 2014, now I have shot new high resolution material for this amazing target with my new imaging platform. 

I see several layers in my photos and that makes them to tell a story beyond any imagination.

First

A visual layer, that's naturally very important to me as a visual artist, revealing the hidden cosmic beauty and poetry is my passion.

Second 

The physical layer, how emission of the nebulae works, radiation pressure, nuclear fusion of the star, gravitational phenomes, etc... all that is extremely beautiful in its own class.

Third 

An existential layer, where we are coming and where we are going in a cosmic scale.
Practically all of the heavier elements in our bodies are coming from supernova explosion's, iron in our blood, oxygen, carbon, etc... We are children of the stars
When our Sun will die after few billion years and turn to a planetary nebula, it'll vaporize the Earth and our remains on it and blows them to the outer space. After aeons our remains are going to end up to a building blocks for a new generation of stars.
We all have been stars and one day we going to be stars again.

This is the beauty and poetry I'm after my photos


BEAUTY AND THE BEAST

Tulip Nebula and a Black Hole 
Click the photo to see a high resolution photo, it's worth it 

A two frame mosaic from a light emitted by an ionized elements,
sulfur=red, hydrogen=green and oxygen=blue


One frame



Black Hole, Cygnus X-1, in a Close Up of the Full Resolution Photo
Click the photo to see a high resolution photo, it's worth it 


Black Hole, Cygnus X-1, is marked in the photo



INFO

The complex and beautiful Tulip Nebula, Sharpless 101,  blossoms about 8,000 light-years away toward the constellation of Cygnus the Swan. Ultraviolet radiation from young energetic stars ionizes the atoms and powers the emission from the Tulip Nebula.  

Also in the featured field of view is the black hole Cygnus X-1, which is also a microquasar because it is one of strongest X-ray sources in planet Earth's sky. The powerful jets from the black hole can't be seen in this photo since they glow light in X-ray wave length. Faint bluish curved shock front, visible at up center, is coursed by the X-ray jet when it hits to a interstellar gas and dust. 

Why we can see the black hole in this image as a star like object?

We can't see the actual black hole but we can see how the material is twirling in the black hole. The speed become so high that the matter starts to turn to an energy emitting light trough the whole spectrum up to X-ray and gamma radiation. 


Photo in Visual Colors
Click the photo to see a high resolution photo, it's worth it 

A two frame mosaic from a light emitted by an ionized elements,
sulfur=red, hydrogen=red and oxygen=blue

Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, Celestron EDGE 14" with 0.7 Focal reducer

Mount, MesuMount Mark II

Cameras, Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 20h
H-alpha, 15 x 1200 s, binned 1x1 = 10 h
O-III, 45x 1200 s, binned 1x1 = 5 h 
S-II, 9 x 1200 s. binned 2x2 = 5h


A single, full scale, 20 min H-alpha exposure, Bin 1x1
 Click for a full scale image.



A single, full scale, 20 min S-III exposure, Bin 2x2
 Click for a full scale image.



A single, full scale, 20 min O-III exposure, Bin 1x1
 Click for a full scale image.







Saturday, November 23, 2024

Astro Anarchy get published

 After about three years without shooting new material from the night sky I'm finally back in business.
I had some health issues and after three operations I'm starting to be good as new again. I have also built a new imaging system, it took about two years to get it up and running. 

I was really amazed about the amount of publicity my work got after I publish my first photos from the new setup. Here are some of the publication, couple of them are in finish only, sorry.


My TV-interview in a live talk show, 
Arto Nyberg (Finnish)
You can see the show here: https://areena.yle.fi/1-70235645






PETA PIXEL
World's leading independent photography, videography, and imaging technology publication

"This Astrophotographer Captures the Universe Unlike Anyone Else"
JEREMY GRAY

You can read the article here: 







MY MODERN MET
5 million visitors coming to our site each month, looking for articles on art, design, photography, architecture, science, technology, environmental issues, and more.

"Remarkable Astrophotography Captures the Sublime Beauty of Universe"
Jessica Stewart on November 11, 2024

You can read the article here: 







AN INTERVIEW BY RADIO KALEVA

"Olemme kaikki su­per­no­vien lapsia" 

Haastattelun voi kuunnella täältä sivun lopusta: (Finnish)
https://www.kaleva.fi/olemme-kaikki-supernovien-lapsia-oululainen-tahtik/11396012

Kuva: Maiju Pohjanheimo




Tuesday, October 29, 2024

Methuselah Nebula, MWP1, project finalized

Planetary Nebulae are like candy of the cosmos, small and colorful treats to the eye.
MWP1 is a Planetary Nebula in constellation Cygnus, the Swan, it's rarely imaged and now I know why.

This is a unusually old, unusually shaped and unusually large planetary nebula, it also was one of the most difficult targets I have captured so far.

When I saw the first  20 min. exposure, it looked like there is plenty of nothing in the frame, this is dim to an extreme.  I have added full size 20 min sub frames of H-alpha and O-III at the end of this blog post so you can see yourself how much data there is. 


MWP1, Methuselah Nebula
Click for a full size image

Photo is in natural color palette from the light emitted by an ionized hydrogen (H-alpha) 
and an ionized oxygen (O-III)


200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels





MWP1 in O-III light only
Click for a full size image

The structure of MWP1 in light of an ionized oxygen (O-III)



INFO

More or less symmetric planetary nebula cataloged as MWP1 lies some 4,500 light-years away in the northern constellation Cygnus the Swan. 

This is one of the largest planetary nebulae known, it spans about 15 light-years. Based on its expansion rate the nebula has an age of 150 thousand years, a cosmic blink of an eye in the 10 billion year life of a sun-like star. But planetary nebulae represent a very brief final phase in stellar evolution, as the nebula's central star shrugs off its outer layers to become a hot white dwarf. In fact, planetary nebulae ordinarily only last for 10 to 20 thousand years. 

The central star of the nebula is on of the hottest stars known. It's so hot that it's producing large amounts of X-rays

Source NASA APOD


Scale in the Sky

The white circle show the apparent size of the Moon in the same scale, this is a large object as a Planetary nebula. Moon has a angular dimension of 30 arcminutes, that's 0.5 degrees. 




Animation

I made this small animation to show the difference between two emission lines, H-a and O-III



Technical details

Processing workflow

Image acquisition, MaximDL
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2, Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, Celestron EDGE 14" with 0.7 Focal reducer

Mount, MesuMount Mark II

Cameras, Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, Astrodon 5nm H-alpha and 3nm O-III

Total exposure time 24h
H-alpha, 21 x 1200 s, binned 1x1 = 8 h
O-III, 48x 1200 s, binned 1x1 = 16h 



A single, full size, 20 min H-alpha and O-III exposure
 Click for a full scale image.

Both images below are jpg photos of a single full size, 20 min. FIT-format 16 bit image. 
Photos are calibrated with darks and bias corrected flats and are heavily stretched to show even a hint of the actual nebula.

H-alpha




O-III








Sunday, October 20, 2024

A start of the new imaging project, MWP1, the Methuselah Nebula

MWP1 ( Motch-Werner-Pakull 1, PN G080.3-10.4, PK 080-10.1) is a very old, dim and diffused planetary nebula in constellation Cygnus, the Swan. It's one of the largest planetary nebula known, it spans about 15 light years of space. The apparent size in the sky is 15.52 x 13,13 arcminutes. (Full moon has a diameter of 30 arcminutes) The estimated age of the nebula is 150.000 years.  

MWP1 is a very usually shaped, unusually large, and unusually old, planetary nebulae. The progenitor star is also one of the hottest stars known, so hot it is producing large amounts of X-rays. There are not very many photos out of this difficult target. 

This is a start of the imaging project with my new imaging system. So far I have shot 15 hours of  light from an ionized oxygen, O-III.  I'll shoot two other emission lines, H-alpha and S-II, when ever the weather allows it. The triple ionized oxygen emits blueish light, in this image the O-III emission is colorized to blue. I can produce a real three band color image after I have collected enough light for ionized hydrogen and sulfur. 


MWP1, the Methuselah Nebula
Click for a large image

MWP1 planetary nebula in light of an ionized oxygen only.




Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, Celestron EDGE 14" with 0.7 Focal reducer

Mount, MesuMount Mark II

Cameras, Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, Astrodon 3nm O-III

Total exposure time
O-III, 45x 1200 s, binned 1x1 = 15h 



A single full scale 20 min O-III exposure
 Click for a full scale image.

MWP1 is a really dim target, a single 20 O-III exposure doesn't show much of it. The photo is calibrated with a bias corrected flat frame and dark frame.


Friday, October 18, 2024

NOCTURNE EXIHIBITION

 First exhibition for a while, this time in my home town Oulu.
A new Art Gallery, AudioGalleria, has it's second exhibition build around my photos. 

The exhibition starts at Saturday19.10 with opening party at 18.00 - 20.00, you all are welcome to enjoy my cosmic nature photographs and complimentary sparkling wine!



Ps.

At Fathers day, Sunday 10.11 at 16.00 I will give a public presentation about my work in Valvesali at down town Oulu. All fathers and other guests are welcome.
After the dry lecture we serve complimentary sparkling wine in nearby AudioGalleria.


Tuesday, October 15, 2024

WR 134, The Rising Phoenix

BUY A POSTER
https://astroanarchy.zenfolio.com/

This is the second light for my new imaging setup, the first light image can be seen HERE

For years I have wanted to shoot a long focal length photo of this amazing mass ejecting star in constellation Cygnus, the Swan. Past five years I have done short focal length imaging with camera optics, now it's time to get closer.

I spent several clear nights to capture light emitted by an ionized elements in this gas formation. (H-alpha, S-II and O-III) For compositional reasons I ended up to a two panel mosaic image. Total exposure time is 23h.

When processing the final image I couldn't be noticing how much this formation looked like a mystical creature, the Phoenix Bird.  I rarely use any other than official catalog numbers as a name of my photos but this time I simply had to name this composition to "Rising Phoenix". 

When art meets science, the results can be beautiful. It can become something more than either of them on their own can ever be.


WR 134 as a Rising Phoenix
Click for a large image, 2500x1300 pixels photo shows the WR 134 like never seen before.

The photo is in mapped colors from an ionized elements, H-alpha=green, S-II=red and O-III=blue, Original resolution is 12.000 x 7000 pixels



200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels




RISING PHOENIX PAREIDOLIA
Click for a large image

This image shows how I see the Phoenix Bird in this image


Info about the WR 134

WR 134 is a variable Wolf-Rayet star located around 6,000 light years away from us in the constellation of Cygnus. It's surrounded by a faint bubble of glowing ionized oxygen, blown out by the intense radiation and fast solar wind from the star. The star has five times the radius of the sun and it's 400,000 times more luminous.


My Wide Field Photo of the Area

Click for a large image, ~2500x2000 pixels

WR 134 can be seen just up left from the center, at right from the middle lays the Tulip Nebula, 
Sh2-101. I took this narrowband  photo with Tokina AT-X 300mm f2.8 camera lens @ full open. 
The camera was a Apogee Alta U16 with an Astrodon narrowband filter set, exposure time around 10h. This is a one frame image. Note, the "noise" in the background is not a noise, there are millions of stars
This photo is a part of very large mosaic image, 
can you find the WR 134 from THIS massive panorama of Northern Milky Way



WR 134, the Rising Phoenix in visual spectrum
Click for a large image, ~2500x1300 pixels

The photo is in visual colors from an ionized elements, H-alpha=red, S-II=red and O-III=blue





A Starless Image of WR 134 Animated
Click for a large image

I made this small animation to show some interesting structures in the gas clouds, they are maybe hints about some earlier outbursts of the star. There are also two almost parallel straight line like structures. The one just under the bubble can be seen in H-alpha light. The second, much dimmer one, locates just right from the red line and can be seen only in O-III light.



An Animation about emission layers
Click for a large image

In this animation the blue O-III channel can be seen alone without other two emission lines in image,  H-alpha and S-II, and in a last frame, without other stars but WR134 visible




Technical details

Processing workflow

Image acquisition, MaximDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics, Celestron EDGE 14" with 0.7 Focal reducer

Mount, MesuMount Mark II

Cameras, Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 5hz

filters, Astrodon 5nm H-alpha, 3nm S-II and 3nm O-III

Total exposure time 23h
H-alpha, 15 x 1200 s, binned 1x1 = 5 h
O-III, 45x 1200 s, binned 1x1 = 15h 
S-II, 9 x 1200 s. binned 2x2 = 3h


A single, full scale, 20 min O-III exposure
 Click for a full scale image.

This is a dim target, 1200s O-III exposure doesn't show much about the O-III formation around the star WR 134.

This is one of the test shots after the collimation procedure. Exposure time is 1200s with 3nm O-III filter. Image is calibrated with Dark Frame and Bias corrected Flat Frame. Target is WR 134 in Cygnus. Stars are pinpoint from corner to corner. Optical analysis of this frame can be found at end of THIS blogpost


PS,


Terminator Arrives from the Future
My wife saw the new photo and pointed out, that the blue formation looks like an electric bubble used for a time traveling, as seen in a Terminator movies.





BUY A POSTER
https://astroanarchy.zenfolio.com/





Wednesday, October 9, 2024

FIRST LIGHT FOR MY NEW IMAGING SETUP

 After a couple of years I'm able to publish a bran new photo!

This is a first light to my new imaging setup, it took couple of years to get it up and running.

I selected a relatively bright target since I wanted to test the system as soon as possible. The Pelican Nebula in constellation Cygnus, the Swan, is my first target.

The new system has a focal length of 2730mm with a massive 0.7 focal reducer for the Celestron EDGE 14" telescope. The new camera has 12 micron pixel size and it gives me an image scale of 0.91 arc seconds/pixel. (That's perfect for my seeing conditions.) The field of view spans 46.1 x 46.1 arcminutes of sky. (For a scale, Full Moon covers 30x30 arcminutes of sky)

The native resolution of the Apogee Alta U9000M camera is 3056x3056 pixels. I'm using a stacking method that doubles the measures by using the "Drizzle" while imaging. The final image is then 6112x6112 pixels. 

Only five hours of light from an ionized hydrogen (H-alpha) is used for this photo. Other two color channels, O-III and S-II, are borrowed from my older long focal length photo of this target taken with Celestron EDGE 11" telescope.

Pelican Nebula
Click the photo to see a 2000x2000 pixel version


Click the image to see a full size version
This photo is in mapped colors from light from an ionized elements, hydrogen = green, sulfur=red and oxygen=blue. (H-alpha, S-II and O-III)


200% Enlarged Portion of the Full Resolution Photo
Click for a full size, 2000x2000 pixels








A Full Size H-alpha Frame
Click the image to see a full size version, 3056x3056 pixels

This is a stretched stack of  fifteen 20min. calibrated H-alpha frames. Collimation wasn't perfect at the time so some oval stars can be seen in lower right corner.  Now the collimation is under one arcseconds and the whole frame has pinpoint stars from corner to corner. (It's a large CCD, diagonal is 52mm) Optical analysis at end of this blog post, 

Herbig-Haro Objects

Herbig–Haro (HH) objects are bright patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionized gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometers per second. Herbig–Haro objects are commonly found in star-forming regions. (Source, Wikipedia)


I have labeled Herbig-Haro Objects in this closeup from my photo.



Technical details

Processing workflow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 27 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics

Celestron EDGE 14" with 0.7 Focal reducer
Mount
MesuMount Mark II

Cameras and filters
Imaging camera Apogee Alta U9000M and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AO Active Optics @ 6hz

Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time

H-alpha, 15 x 1200 s, binned 1x1 = 5 h 
O-III, 3x 1200 s, binned 2x2 = 1h 
S-II, 3 x 1200 s. binned 2x2 = 1h (