COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

BUY A MUSEUM QUALITY POSTER

Friday, September 30, 2016

First light for the Autumn season 2016, Eastern part of the Veil nebula supernova remnant.



This is an opening shot for the Spring season 2016, it's good to be back again!
This time I shot a two frame mosaic out of the Eastern part of the Veil Nebula SNR. This image shows well the complex nature of the shock front sourced by an exploded star, a supernova.
Total exposure time from several nights is around 15 hours.


A two panel mosaic of the Eastern Veil Nebula
Please, click for a full size photo, 1850 x 1200 pixels

Image is in mapped colors, from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.


A closeup
Please, click for a full size photo, 1850 x 1200 pixels




Orientation
Please, click for a full size photo

Area of interest is marked as a white rectangle


INFO

 Eastern Veil is a part of theVeil Nebula supernova remnant at constellation Cygnus.
Veil Nebula is a cloud of ionized gas and dust, leftovers from an exploded star. The star went off some 5000-8000 years ago at distance of about 1470 light years. The whole Veil Nebula is a relatively faint target and difficult to image due to the large angular diameter, about three degrees, and a dense star field.

Eastern Veil in visual colours
Please, click for a full size photo

Image is in Natural color palette from the emission of ionized elements, 
R=Hydrogen + Sulfur, G=Oxygen and B=Oxygen + Hydrogen.


Technical details

Processing work flow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 25% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f10 with 0,7 focal reducer for Edge HD 1100 telescope

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2 and SXV-AOL



Astrodon filter, 5nm H-alpha
Astrodon filter, 3nm O-III
Astrodon filter, 3nm S-II

Exposure times
H-alpha, 9x 1200s = 6h (3h per panel)
O-III, 3 x 1200s binned = 6h (3h per panel)
S-II,  3 x 1200s binned = 3h (1.5h per panel)
Total 15h

Color channels used for the final image 
Please, click for a full size photo



A single uncropped, calibrated and stretched 20 min. H-alpha frame as it comes from the camera





Tuesday, August 30, 2016

Flash from the past, Cederblad 214, the Cosmic Question mark, reprocessed



The new imaging season will start at 5. of September up here 65N. I have been practising my data processing skills by reprocessing some of my older image data. This time the Cederblad 214 got a new processing. Not a big difference to original processing, little better colors and the detail level is somehow higher.


Cederblad 214, the Cosmic Question Mark
Click for a much large image

Image in mapped colors from ionized elements, Red=Sulfur, Green=Hydrogen & Blue=Oxygen. Image was taken with the Canon camera optics, EF 200mm f.8 full open, QHY9 astrocamera and the Baader narrowband filters. The original blog post from 2012, with technical details, can be seen HERE


A detail

A detail shot from the bright central region of the image at the top.  This photo was taken with my new setup, Celestron Edge HD 1100 f7, Apogee Alta U16 astrocamera and the Astrodon narrowband filters, Spring 2014. The original blog post from 2012, with technical details, can be seen HERE

INFO
Source: NASA APOD

Towering pillars of cold gas and dark dust adorn the center star forming region of Sharpless 171. An open cluster of stars is forming there from the gas in cold molecular clouds. As energetic light emitted by young massive stars boils away the opaque dust, the region fragments and picturesque pillars of the remnant gas and dust form and slowly evaporate. The energetic light also illuminates the surrounding hydrogen gas, causing it to glow as an emission nebula. Pictured above is the active central region of the Sharpless 171 greater emission nebula. Sharpless 171 incorporates NGC 7822 and the active region Cederblad 214, much of which is imaged above. The area above spans about 20 light years, lies about 3,000 light years away, and can be seen with a telescope toward the northern constellation of the King of Ethiopia (Cepheus).






Saturday, August 27, 2016

Cinemascope format panoramas from my astro photos



While waiting to image season to start up here, I have worked with a cinemascope format movie theatre presentation from my photos. This is an extra wide ~21:9 format used in movie theaters. The actual film is not ready yet but I have some of my images converted to this ultra wide format. I think they will look great at a large movie screen! I'll publish some of individual panoramic format photos here, images are downscaled for the web.


Cinemascope format image of the Sharpless 114 (Sh2-114)
The Flying Dragon Nebula, in eastern Cygnus, be sure to click for a full resolution version!


Natural color composition from the emission of ionized elements. 
More info and the technical details about my photo can be found from HERE

INFO

Sh2-114 is a complex and unusual HII emission nebula. Its complex, wispy structure is likely the result of winds from hot, massive stars interacting with the magnetic fields in the interstellar medium. But very little is known about it. (Source, https://www.noao.edu/image_gallery/html/im1112.html)






Monday, August 22, 2016

Pickering's Triangle reprocessed




This shot about the Pickering's Triangle was my opening image for the Autumn season 2015.
It was also selected for a Astronomy Picture of the Day (APOD) by the NASA. 

I'm waiting to new imaging season to start. To practise my astronomical image processing skills, I have reprocessed the whole dataset, about 20 hours of exposures. 


Pickering's Triangle
Be sure to click for a large image!

The final photo has now better details and little bit more vivid colors. You can see the previous version in the original blog post HEREColors are from the ionized elements, Hydrogen, Sulfur and Oxygen. S-II = Red, H-alpha = Green and O-III = Blue. 


A closeup
Be sure to click for a large image!




An experimental starless version
Be sure to click for a large image!

Details in this complex supernova remnant are easier to see when the stars are suppressed.  It looks kind of spooky too.

The whole two frame mosaic in cinemascope format
Be sure to click for a large image!




A wide field photo shows the whole Veil Nebula supernova remnant

The Pickering's Triangle can be see at one o'clock position.
My blog post about the wide field shot can be seen HERE.


Technical details

Processing work flow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 33% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2 and SXV-AOL

Astrodon filter, 5nm H-alpha
Astrodon filter, 3nm O-III
Astrodon filter, 3nm S-II

Exposure times
H-alpha, 15 x 1200s = 5h
O-III, 36 x 1200s binned = 12h (Autumn 2014)
S-II,  from my older wide field photo of the Veil Nebula = 3h 
Total 20h




Astro anarchy gets published, Large print of the central Cygnus


This large 100 x 400 cm (3.3 x 13.2 feets) print out of  my photo of the Cygnus is located in Creative Laboratory (Luova Laboratorio) Oulu, Finland.

A large print
Please, click for a full size photo

Image is printed on canvas with an aluminium frame. The size is 100 x 400 cm (3.3 x 13.2 feets) 
This is a very high resolution mosaic image and it can be printed even much larger scale without losing any sharpness. The printed photo is actually a part from a large mosaic picture of constellation Cygnus. The whole 18-panels mosaic can be seen HERE 



Older large public artworks out of my photos


Path of Swans, Svenska Private School, Oulu, Finland, 2014

Print on aluminium, 360 x 160 (142 x 63 inch) More info HERE



Cirrus of Cygnus,  The "Oulu Region Joint Authority for Education" in Haukipudas, 2014

Print on aluminium, over 3 x 10 meters (10 x 33 feets) More info HERE







Saturday, August 20, 2016

An experimental 3D-study of the Great galaxy of Andromeda, M31



This is an experimental test with a 3D-conversion of my astronomical image. Only real elements from the original image are used, there is nothing added but the estimated volumetric information!

NOTE. This is a personal vision about shapes and volumes, based on some scientific data, deduction and an artistic impression.

Video


This is a looped video, click to start and stop. Original movie is in HD  1080p resolution.
All the foreground stars from the original image are removed. Starlike objects seen in this animation are actually globular clusters orbiting the Andromeda Galaxy. Click the YouTube logo at lower right corner to see this video in YouTube at full screen, you should set quality to HD 1080p,


Original 2d-image used for this 3d-study

An original  blog post with imaging details can be found from HERE


Info about the technique used

Due to huge distances, real parallax can't be imaged in most of the astronomical objects.
I have developed an experimental technique to convert my astropics to a artificial volumetric models.

My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.

I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...

The general structure of many star forming regions is very same, there is a group of young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.

How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager.






Wednesday, August 17, 2016

Cinemascope format panoramas from my astro photos



I have worked with a cinemascope format movie theatre presentation from my photos. This is an extra wide ~21:9 format used in theaters. The actual film is not ready yet but I have some of my images converted to this ultra wide format. I think they will look great at a large movie screen! I'll publish some of individual panoramic format photos here, images are downscaled for the web.


Cinemascope format details from the Veil Nebula supernova remnant


Witch's Broom Nebula (Western Veil)
Be sure to click for a full resolution version!

Image details can be seen HERE


Pickering's Triangle
Be sure to click for a full resolution version!

Image details can be seen HERE


An older wide field shot about the whole Veil nebula supernova remnant

The Witch's Broom Nebula locates at the most right and the Pickering's Triangle locates at center right. Image details can be seen HERE






Monday, August 15, 2016

New imaging season about to start



The mandatory Summer pause will be over soon. We'll have astronomical darkness again at September 5. up here 65N. After that, I'll be able to shoot some new material. 

I have made a poster format collection out of my images, with different instruments. Photos are shot between 2005 and 2016. An average exposure time per photo is around 25h. The actual exposure times varies between10 to 150 hours.

My photos between years 2005 and 2016.
Images in four posters are shot with different instruments. 
Please, click the posters to see them in full scale!


Images shot with Canon EF 200mm f1.8 camera lens.
QHY9 astrocamera and the Baader narrowband filters

Info and image details for each photo can be found from HERE


Images shot with Tokina AT-X 300mm f2.8 camera lens.
QHY9 astrocamera and the Baader narrowband filters

Info and image details for each photo can be found from HERE


Images shot with Meade LX200 GPS 12" @ ~f6 telescope.
QHY9 astrocamera and the Baader narrowband filters




Images shot with Celestron Edge HD 1100 telescope.
Apogee Alta U16 and Astrodon narrowband filters









Tuesday, May 10, 2016

An experimental 3D-stereo pictures of Pickering's Triangle



We are permanently out of astronomical darkness, up here 65N, for about six months. I will publish some more experimental material during this period of time. All my experiments are based on photos shot by me.

Pickering's Triangle as a freeview stereo pairs
Click for a large image

Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.


For a parallel viewing method (Eyes parallel to each other)

Image pair for the Parallel Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.



For a cross vision viewing method (Eyes crossed)

Image pair for the Cross Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.


HOW?

All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.

I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.

What are the known facts?

By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer.  There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .

Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.

Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits bluish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.

Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.





Tuesday, May 3, 2016

An experimental 3D-stereo pictures of IC 1805, the Heart Nebula


Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.


heart nebula, IC 1805, as a freeview stereo pairs
Click for a large image


For a parallel viewing method (Eyes parallel to each other)

Image pair for the Parallel Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.




For a cross vision viewing method (Eyes crossed)

Image pair for the Cross Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.


HOW?

All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.

I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.

What are the known facts?

By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer.  There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .

Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.

Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits bluish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.

Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.