All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Friday, November 3, 2017

WR 134, Ring Nebula area as a mosaic image.

While shooting  my first light photo for the Autumn season 2017, I shot some frames frames around it for a mosaic image. 

A mosaic image of WR 134 area in Cygnus
Click for a large image.

The Wolf-Rayet shell, WR 134, can be seen as an oval shape at center up. There is a strong emission from ionized oxygen, O-III, it can be seen as blue color. 
Image is in mapped colours, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen.

A large six panel version of the mosaic image

Lots of is coining on in this area in Cygnus.

Orientation in Cygnus
Click for a large image.

The area of WR 134 is marked as a white rectangle.
Info about this large mosaic image can be seen HERE


This image shows a ring-like nebula traced by the glow of ionized hydrogen and oxygen gas. Embedded in the region's interstellar clouds of gas and dust, the complex, glowing arcs are sections of bubbles or shells of material swept up by the wind from Wolf-Rayet star WR 134, brightest star near the center of the frame. Distance estimates put WR 134 about 6,000 light-years away, making the frame over 100 light-years across. Shedding their outer envelopes in powerful stellar winds, massive Wolf-Rayet stars have burned through their nuclear fuel at a prodigious rate and end this final phase of massive star evolution in a spectacular supernova explosion. The stellar winds and final supernovae enrich the interstellar material with heavy elements to be incorporated in future generations of stars. (Source, NASA APOD, )

Technical details

Processing work flow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f10 with 0,7 focal reducer for Edge HD 1100 telescope

10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and SXV-AOL

Astrodon filter, 5nm H-alpha
Astrodon filter, 3nm O-III
Astrodon filter, 3nm S-II

Exposure times

H-alpha, 51x 1200s, binned 2x2 = 17h
O-III, 9 x 1200s binned 4x4 = 8h 
S-II,  9 x 1200s binned 4x4 = 8h 
Total 33h

No comments: