COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Saturday, January 31, 2015

Cederblad 214 as an experimental 3D stereo pair


Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.

3D Soul Nebula as a freeview stereo pair

For a parallel viewing method

Nebula for the Parallel Vision viewing method. Click for a large image.
Original 2D-image can be seen in HERE


For a cross vision viewing method

Nebula for the Cross Vision viewing method. Click for a large image.
Original 2D-image can be seen in HERE


More 3D-experiments in my portfolio, including  the



A method used for the 3D conversion, a short explanation

All pillar like formations are pointing to a source of ionization, the open cluster NGC 7822. There are some more dense areas in a gas, able to resist the radiation pressure from young star cluster. Those dense areas, 
at a tip of the pillars, are also potential places for the formations of the new stars.

HOW?

I have been asked many times, how my 3D-images are done, so here it goes!

All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.

I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.

What are the known facts?

By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer.  There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .

Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, and the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.

Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. ( Look previous image, above this text.) Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits blueish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.

Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.

WHY?

Firstly, they are great fun to do. Secondly, just because I can.

Many times images of nebulae looks like paintings on the canvas. I like to show a real nature of those distant objects as a three dimensional shapes floating in a three dimensional volume. This is a great way to show, how I personally see astronomical targets as a 3D-forms inside my head.

3D-experiments seems to increase a public interest to a subject, as you might have noticed.
I have studied my astronomical images much deeper, than ever without 3D-modeling.


3D-studies has really added a new dimension to my work as an astronomical photographer. (pun intended)





Thursday, January 29, 2015

NGC 281, the Pac-Man Nebula, as an experimental 3D stereo image



Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression.

3D Soul Nebula as a freeview stereo pair

For a parallel viewing method

Nebula for the Parallel Vision method. Click for a large image.
Original 2D-image can be seen in HERE


For a cross vision viewing method

Nebula for the Cross Vision method. Click for a large image.
Original 2D-image can be seen in HERE


More 3D-experiments in my portfolio, including 3D Red/Cyan anaglyph
http://astroanarchy.zenfolio.com/f359296072

About the structure of the nebula

All pillar like formations are pointing to a source of ionization, the open cluster NGC 281. There are some more dense areas in a gas, able to resist the radiation pressure from young star cluster. Those dense areas, at a tip of the each pillar, are also potential places for the formations of the new stars. Note. There are some very dim outer formations in this nebula, I haven't noticed them before. Like the one pillar like at the eleven o'clock position. 


Wednesday, January 28, 2015

Soul Nebula, IC 1848, as an experimental 3D stereo image pair


The weather doesn't support the imaging of the new material, so I made a new experimental 3D-study out of my photo of the Soul Nebula, IC 1848.

Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression.

3D Soul Nebula as a freeview stereo pair

For a parallel viewing method

Nebula for the Parallel Vision method. Click for a large image.
Original 2D-image can be seen in HERE

For a cross vision viewing method

Nebula for the Cross Vision method. Click for a large image.
Original 2D-image can be seen in HERE


More 3D-experiments in my portfolio





Tuesday, January 27, 2015

Jellyfish Nebula, IC 443, a supernova remnant in Gemini



This winter season has been worst I have seen in fifteen years. We have now had almost constant cloud cover for about three months. There was a partially clear sky for couple of nights and I managed to use it, since my observatory is located just next to my home. The night between  18. and 19. of January was kind of clear but the seeing and transparency was very poor. I was about to toss away all of the frames for IC 443 but since I haven't anything else to process, I kept them. Here are the results, I did the best I could with a low quality material. This object will need much more exposures in future.

IC 443, the Jellyfish Nebula SNR

IC 443 in H-alpha light alone, four hours of integration time.


INFO

IC 443, Jellyfish Nebula, Sharpless 248 (Sh2-248), is a galactic supernova remnant in the constellation Gemini. It locates near the star Eta Geminorum (A bright star at middle right) at distance of about 5000 light years. This supernova event very likely created a neutron star (CXOU J061705.3+222127), a collapsed remnant of the stellar core. Nebula spans about 50-70 light years. This photo has an angular size of about one arc minute. (Full Moon has an apparent size of ~30 arc minutes.)


An older wide field photo of the same object

Image is in mapped colors from the emission of ionized elements, Hydrogen, Sulfur and Oxygen.
Original blog post of this image with technical details can be seen HERE


A color version of IC 443
Colors from Sulfur and Oxygen are borrowed from the photo above

Image is in mapped colors from the emission of ionized elements, Hydrogen,
Sulfur and Oxygen. Oxygen and Sulfur are from an older wide field photo.

An experimental starless view

In this experimental starless image, the actual remnant stands out nicely. The deep red
color is from the Hydrogen alpha emission, the strongest emission line of  the hydrogen.


Technical details

Processing work flow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2
Astrodon filter, 5nm H-alpha

Exposure times
H-alpha, 12 x 1200s = 4h