COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Showing posts sorted by date for query 3d. Sort by relevance Show all posts
Showing posts sorted by date for query 3d. Sort by relevance Show all posts

Thursday, October 7, 2021

Filaments of Veil in mapped colors

 I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. A version in visual color palette can be seen here,  https://astroanarchy.blogspot.com/2021/09/filaments-of-veil-nebula-snr.html

Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo. 

Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.

Filaments of central veil
Click for a large image (1100 x 2900 pixels)

Image is in mapped colors, from the emission of ionized elements, R=Sulphur, G=Hydrogen and B=Oxygen


A closeup
Click for a large image

The Pickering's Triangle part of the Veil Nebula


Orientation
Click for a large image


INFO

Since all of the heavier elements are born in exploding stars, we all are children of supernovae. Veil Nebula is located in the constellation Cygnus at a distance of 1500 light-years. It spans three degrees of sky, (Moon has an angular diameter of 0,5 degrees at the sky) real diameter is around 70 light-years. I collected data for the photo between 2012-2020 and I made this 3D model in 2021,exposure time is 45 hours

A 3D-study of Veil nebula SNR
3D-study of Veil Nebula Photo


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality.

INFO About my 3D-transformation technique and large animation here: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html





Wednesday, October 6, 2021

Unveiling The Veiled

The Veil nebula supernova remnant in Cygnus. Original image was shot with the Canon EF 200 mm f1.8 camera optics full open, QHY9 astro camera and Baader narrowband filters at 2013.

New data is shot with Tokina 300mm f2.8 camera optics and Celestron Edge HD 11" telescope, Apogee Alta U16 astro camera with Astrodon narrowband filters between 2016 - 2020
Total exposure time is now about 45 hours.

The Veil nebula @SuperRare auction 
Animation,
 https://superrare.com/artwork-v2/unveiling-the-veiled-volume-29145
Photo, https://superrare.com/artwork-v2/unveiling-the-veiled-29137

Veil nebula Unveiled

Click for a large image, 1250 x 1700 pixels

A very deep image of the veil nebula supernova remnant in mapped colors.
Nebula in visual colors from light emitted by an ionized elements can be seen here,
https://astroanarchy.blogspot.com/2021/09/veil-nebula-unveiled-ii.html

3D-study of Veil Nebula Photo


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality.

INFO


Since all of the heavier elements are born in exploding stars, we all are children of supernovae. Veil Nebula is located in the constellation Cygnus at a distance of 1500 light-years. It spans three degrees of sky, (Moon has an angular diameter of 0,5 degrees at the sky) real diameter is around 70 light-years. I collected data for the photo between 2012-2020 and I made this 3D model in 2021,exposure time is 45 hours

How the 3D-model is made


My Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D


For as long as I have captured images of celestial objects, I have always seen hem three-dimensionally in my head. The scientific information makes my inner visions much more accurate, and the 3-D technique I have developed enables me to share those beautiful visions with others.

How accurate my 3-D-visions are depending on how much information I have and how well I implement it.

The final 3-D-image is always an appraised simulation of reality based on known scientific facts, deduction, and some artistic creativity.

After I have collected all the necessary scientific information about my target, I start my 3-D conversion from stars. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can locate the correct number of stars in front of it and behind it.

Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud and the nebula itself is glowing light, the principle is very much the same as in fluorescent tubes. The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker.

By this means, forms of the nebula can be turned to a real 3-D shape. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.

The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The same stellar wind also initiates the further collapse of the gas cloud and the birth of the second generation of stars in the nebula. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.

Ionized oxygen (O-III) glows with a bluish light, and since oxygen needs a lot of energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.

Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission one, otherwise we couldn’t see it at all.

Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale

3D-model without textures







Monday, October 4, 2021

Three 3D-conversions out of my astronomical photos

 I have made dozens of 3D-conversions out of my astronomical photos. As an artist I like to find a new views to the reality. My models are not just a guesswork, the conversion is based on real scientific data.
At the end of this blog post there is a short explanation, how I do my conversion work.


Veil nebula in O-III light alone

Original astronomical photo about part of the Veil nebula SNR in O-III light only.

3D-study of Veil Nebula Photo






NGC1499 the California Nebula

My photo of California Nebyla in mapped colors


3D-study of California Nebula Photo







Bubble Nebula

My photo of Bubble Nebula in mapped colors


3D-study of Bubble Nebula Photo




How 3D-models are made

My Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D


For as long as I have captured images of celestial objects, I have always seen hem three-dimensionally in my head. The scientific information makes my inner visions much more accurate, and the 3-D technique I have developed enables me to share those beautiful visions with others.

How accurate my 3-D-visions are depending on how much information I have and how well I implement it.

The final 3-D-image is always an appraised simulation of reality based on known scientific facts, deduction, and some artistic creativity.

After I have collected all the necessary scientific information about my target, I start my 3-D conversion from stars. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can locate the correct number of stars in front of it and behind it.

Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud and the nebula itself is glowing light, the principle is very much the same as in fluorescent tubes. The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker.

By this means, forms of the nebula can be turned to a real 3-D shape. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.

The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The same stellar wind also initiates the further collapse of the gas cloud and the birth of the second generation of stars in the nebula. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.

Ionized oxygen (O-III) glows with a bluish light, and since oxygen needs a lot of energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.

Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission one, otherwise we couldn’t see it at all.

Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale

3D-model without textures

Thursday, September 30, 2021

Filaments of Veil Nebula SNR

 I shot most of the lights for this image back in 2016, now I have added some new material to it and reprocessed the whole image. An older mapped color version can be seen here, https://astroanarchy.blogspot.com/2016/12/filaments-of-veil-nebula.html

Photo was shot with a Celestron Edge HD 11" telescope, Astrodon naarrow band filters and Apogee Alta U16 astro camera. New data is shot with a shorter focal length instrument, Tokina AT-x 300mm f2.8 camera lens, same camera and filters. Dim background emission is taken from a new material and added to this photo. 

Total exposure time is now 44 hours for the whole three frame mosaic and the resolution is 11.000 x 4000 pixels.

Filaments of central veil
Click for a large image (1100 x 2900 pixels)


Image is in visual palette from emission of an ionized elements, hydrogen (H-alpha), sulfur (S-II) and oxygen (O-III). Red=Hydrogen + 33% sulfur, Green=oxygen and Blue=oxygen + 33% hydrogen to compensate otherwise missing H-beta emission.

A closeup
Click for a large image




Orientation
Click for a large image


 

Unveiling the Veiled


Every single pixel in this 3d-animation is from the original 2D-image above. The model is based on on known scientific facts, deduction and some artistic creativity. The result is an appraised simulation of reality. Astronomical photos are showing objects as paintings on a canvas, totally flat. In reality, they are three dimensional forms floating in three dimensional space. The purpose of my 3d-experiments is to show that and Give an idea, how those distant objects might look in reality. More info about my 3D-technique at end of this blog post: https://astroanarchy.blogspot.com/2021/10/unveiling-veiled.html

NOTE. It looks like that the animation has less stars, than the original 2d-image. That's not true, stars is normal photo are getting projected to a same plane. In 3D-model stars are in volume and it only looks like, that there are less stars.





Thursday, September 16, 2021

Viral Nebula Rocks

IC1396 converted to 3D animation, very first of its kind
NOW on SuperRare

I turned my photo of IC1396 to a 3d-model at 2012 to show that it’s actually a three-dimensional volume floating in three-dimensional space. This artwork is not just a guess work, it’s based on scientific data about the structure of emission nebulae and real distance information. 

This animation went viral and it was published by several news media and major websites globally at 2012, links after the photos


Location, Constellation Cepheus at distance of about 3000 light years
IC 1396 spans about three degrees of sky (Full Moon has diameter of 0,5 degrees)
I took the photo and made the model at 2012, exposure time 15 hours. 
Time used for the collecting scientific data, 3D-model and animation way too much.


Original photo used for the animation
My original photo of emission nebula IC1396


Rotating Nebula in media

SLATE by Phill Plait 
Best Astronomy Images of 2012: 

DISCOVER MAGAZINE,
Jaw-dropping rotating 3D nebula


SMITHSONIAN MAGAZINE by Colin Schultz
Amazing Astrophotography Lets You See Nebulae in 3D

WIRED by Nadia Drake,
New Dimension: Nebulas Are Even More Amazing in 3-D
https://www.wired.com/2013/02/nebulas-in-3-d/

HUFFINGTON POST by Ryan Grenoble,
Nebula IC 1396, Animated In 3D By Finnish Astrophotographer J-P Metsavainio, Is Astounding

PETAPIXEL, Michael Zhang 
Amazing Animated GIFs Capture Nebulae in 3D Using Artificial Parallax
https://petapixel.com/2013/02/20/amazing-animated-gifs-capture-nebulae-in-3d-using-artificial-parallax/

This animation was selected to a Moving the Still exhibition in Miami Art Week 2012


How the 3D-model is made

My Moleskine notebook pages from 2008, I planned how to convert nebulae to 3D


For as long as I have captured images of celestial objects, I have always seen hem three-dimensionally in my head. The scientific information makes my inner visions much more accurate, and the 3-D technique I have developed enables me to share those beautiful visions with others.

How accurate my 3-D-visions are depending on how much information I have and how well I implement it.

The final 3-D-image is always an appraised simulation of reality based on known scientific facts, deduction, and some artistic creativity.

After I have collected all the necessary scientific information about my target, I start my 3-D conversion from stars. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can locate the correct number of stars in front of it and behind it.

Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud and the nebula itself is glowing light, the principle is very much the same as in fluorescent tubes. The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker.

By this means, forms of the nebula can be turned to a real 3-D shape. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.

The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The same stellar wind also initiates the further collapse of the gas cloud and the birth of the second generation of stars in the nebula. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.

Ionized oxygen (O-III) glows with a bluish light, and since oxygen needs a lot of energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.

Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission one, otherwise we couldn’t see it at all.

Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale

3D-model without textures


Friday, August 27, 2021

Visions of Veil

 This is an experimental test with a 3D-conversion of my astronomical image. Only real elements from the original image are used, there is nothing added but the estimated volumetric information!

NOTE. This is a personal vision about shapes and volumes, based on some scientific data, deduction and an artistic impression.


NFT of this video is for sale @SuperRare



Visions of Veil




 Original 2D Image, NASA APOD 2015
Click for a large image



How is the volume added to my photos?

Importantly, for as long as I have captured images of celestial objects, I have always seen them in three dimensions in the theatre of my mind. I did develop a unique process to create scientifically accurate 3D volumetric images of 'my' nebulas. The final 3D volumetric image is always an appraised simulation of reality based on known scientific data, deduction, and some artistic creativity.

After I have collected all the necessary scientific information about my target, I start my 3-D conversion using the stars in the image. Usually there is a recognizable star cluster which is responsible for ionizing the nebula. We don’t need to know its absolute location since we know its relative location. Stars ionizing the nebula have to be very close to the nebula structure itself. I usually divide up the rest of the stars by their apparent brightness, which can then be used as an indicator of their distances, brighter being closer. If true star distances are available, I use them, but most of the time my rule of thumb is sufficient. By using a scientific estimate of the distance of the Milky Way object, I can then locate the correct number of stars in front of it and behind it.

Emission nebulae are not lit up directly by starlight; they are usually way too large for that. Rather, stellar radiation ionizes elements within the gas cloud. So, it’s the nebula itself that is glowing. (The principle is very much the same as in fluorescent tubes.) The thickness of the nebula can be estimated from its brightness, since the whole volume of gas is glowing, brighter means thicker. Nebulae are also more or less transparent, so we can see both sides of it at the same time, and this makes model-making a little easier since not much is hidden.

The local stellar wind, from the star cluster inside the nebula, shapes the nebula by blowing away the gas around the star cluster. The stellar wind usually forms a kind of cavity in the nebulosity. The collapsing gas can resist the stellar wind and produces pillar like formations which must point to a cluster.

Oxygen needs a lot energy to ionize it, this can only be achieved relatively close to the star cluster in the nebula. I use this information to position the O-III area (the bluish glow) at the correct distance relative to the heart of the nebula.

Many other small indicators can be found by carefully studying the image itself. For example, if there is a dark nebula in the image, it must be located in front of the emission nebula, otherwise we can’t see it.

Explosions in space are more or less symmetrical, due to that, most of the supernova remnants and planetary nebulae mainly has a ball like appearance.

Using the known data in this way I build a kind of skeleton model of the nebula. Then the artistic part is mixed with the scientific and logical elements, and after that the rest is very much like creating a sculpture on a cosmic scale.




Thursday, December 31, 2020

All my photos from year 2020

 
The year 2020 has been interesting since I'm between the scopes at the moment. I converted my old Tokina At-x 300 mm f2.8 camera optics and paired it with the Apogee Alta U16 astro camera.
At first it looked like an impossible task since the back focus distance of Tokina lens was way too short for the camera. After some heavy handed modifications (including an angle grinder) I managed to marry those too junks of metal, glass and silicon together. Kind of Frankenstein's monster but worked!


Tokina 300mm f2.8 and Apogee Alta U16

After many years shooting with a long focal length instrument it was like a fresh air to work with wide field tool. 

All my photos from the year 2020
Click for a full size poster (2000 x 2800 pixels)

NOTE, images are not in scale to each other


There are some very rarely imaged objects in the the poster

Photo 11, 
https://astroanarchy.blogspot.com/2020/04/two-ways-to-go-in-same-field-of-view.html

Supernova remnant Sh2-221 and a planetary nebula Sh2-216. There are very few images out of them, I haven't seen any other three band NB images from Sh2-221

43 hours of exposures was needed to reveal targets in full glory. There are very few images out there from Sh2-205 and even less from LBN 696.

Photo 12, https://astroanarchy.blogspot.com/2020/11/a-supernova-remnant-in-cygnus-g65357-snr.html

This is a very large dim and diffused supernova remnant in Cygnus, The dense starfield almost buries faint filament structures. Extremely few photos out there showing the whole SNR.
This SNR is part of the Cygnus mosaic (Image 21).

Photo 21, 
https://astroanarchy.blogspot.com/2020/01/deep-in-to-my-heart-ic-1805-in-mapped.html

A very commonly imaged target but this deep exposure reveals a very dim supernova remnant just above the "Tip of the Heart". SNR can be seen at eight o'clock position in the photo. 


Two massive panorama mosaics

This year I got ready two very large narrowband mosaic images. 
Material for them was collected during past ten years. 
The Great Mosaic of Cygnus covers now the whole constellation.
Second as large mosaic spans sky from Cassiopeia to Cepheus. 
Exposure time for both of then is over 800 Hours.

Cygnus 

https://astroanarchy.blogspot.com/2020/12/cygnus-project-grande-finale-for-now.html

Cassiopeia to Cepheus

https://astroanarchy.blogspot.com/2020/12/from-cassiopeia-to-cepheus-eight-years.html


THE BOOK
At 2020 we published a book about nebulae, "Cosmic Clouds 3D" We =  Brian May, David J Eicher and Me. It was a pleasure to work with talented people. The idea for the book came from Brian may, the legendary Queen guitarist and astrophysicist. At the moment the book is practically sold out.




IMAGE INFO

  1. Sh2-124, https://astroanarchy.blogspot.com/2020/11/sharpless-124-sh2-124.html
  2. Sh2--124 wide field
  3. Clouds of Cassiopeia, https://astroanarchy.blogspot.com/2020/11/cassiopeia-mosaic-gets-larger.html
  4. SNR CTB1https://astroanarchy.blogspot.com/2020/02/ctb1-supernova-remnant-in-cassiopeia.html
  5. Simeis 147 https://astroanarchy.blogspot.com/2020/03/the-birth-of-venus.html
  6. Tulip nebula area, https://astroanarchy.blogspot.com/2020/10/the-tulip-nebula-in-cygnus-sh2-101.html
  7. Sh2-205, https://astroanarchy.blogspot.com/2020/03/a-rare-image-sharpless-205-and-ngc-1491.html
  8. NGC 1499, https://astroanarchy.blogspot.com/2020/01/a-deep-view-to-california-nebula-in.html
  9. Sh2-132, https://astroanarchy.blogspot.com/2020/11/a-new-photo-of-sharpless-132-sh2-132.html
  10. Sh2-126, https://astroanarchy.blogspot.com/2020/10/new-photo-sharpless-126-in-lacerta.html
  11. Sh2-216 & 221, https://astroanarchy.blogspot.com/2020/04/two-ways-to-go-in-same-field-of-view.html
  12. SNR G65.3+5,7,https://astroanarchy.blogspot.com/2020/11/a-supernova-remnant-in-cygnus-g65357-snr.html
  13. IC 63 & NGC281, https://astroanarchy.blogspot.com/2020/03/ic-63-and-ngc-281.html
  14. SNR IC443, https://astroanarchy.blogspot.com/2020/03/supernova-remnant-ic-443-wide-field.html
  15. Bubble to Cave, https://astroanarchy.blogspot.com/2020/03/from-bubble-to-cave-nebula-area.html
  16. Cygnus, https://astroanarchy.blogspot.com/2020/12/cygnus-project-grande-finale-for-now.html
  17. Sh2-114, https://astroanarchy.blogspot.com/2020/12/sharpless-114-flying-dragon-nebula.html
  18. IC 405 & 410,  https://astroanarchy.blogspot.com/2020/03/new-photo-deep-in-to-darkness.html
  19. Cederblad 214,https://astroanarchy.blogspot.com/2020/02/new-photo-of-cederblad-214-cosmic.html
  20. From CTB1 to Cave,https://astroanarchy.blogspot.com/2020/03/from-cassiopeia-to-cepheus.html
  21. IC 1805,  https://astroanarchy.blogspot.com/2020/01/deep-in-to-my-heart-ic-1805-in-mapped.html
  22. IC 1396, https://astroanarchy.blogspot.com/2020/01/ic-1396-wide-field-reprocessed.html
  23. Cassiopeia to Cepheus, https://astroanarchy.blogspot.com/2020/12/from-cassiopeia-to-cepheus-eight-years.html
  24. Bubble to cave, https://astroanarchy.blogspot.com/2020/03/from-bubble-to-cave-round-ii.html
  25. Sh2-205 & LBN 696, https://astroanarchy.blogspot.com/2020/03/a-two-frame-mosaic-photo-of-sharpless.html



Friday, September 25, 2020

Cosmic Clouds 3D is published now!


Cosmic Clouds 3D
Where Stars Are Born

At September 23. we had a live broadcast with Brian May, David J Eicher and me.
It was hosted by Alison Boyle from the Science Museum of London, many thanks!


From top left, Science Museum Keeper of Science Collections Alison Boyle, Artist and astrophotographer J-P Metsavainio, Astronomy Magazine editor David J. Eicher and the legendary Queen guitarist and astrophysicist Brian May.

You can see a recording from the live broadcast from here,

You can buy the book from the London Stereoscopic company,
https://shop.londonstereo.com/cosmic-clouds-3-d.html







 

Tuesday, September 15, 2020

A press relase, lehdistötiedote

 

Cosmic Clouds 3D
Where stars are born

A press release About the book  is out

You can download it from HERE (In English)

Lehdistötiedote kirjasta on julkaistu.

Voit ladata sen TÄÄLTÄ (suomeksi)


A book by Brian May, David J Eicher and J-P Metsavainio







Monday, September 14, 2020

astro Anarchy get published

 


Book project finalized!
Cosmic Clouds 3D

By
Brian May (Yes, the legendary Queen guitarist and astrophysicist)
David J Eicher
and
J-P Metsavainio

This unique Book shows the cosmic wonders in 3D


More info about this book, please visit in official site of QUEEN
http://www.queenonline.com/news/pre-order-cosmic-clouds-3-d-by-brian-may






Saturday, August 20, 2016

An experimental 3D-study of the Great galaxy of Andromeda, M31



This is an experimental test with a 3D-conversion of my astronomical image. Only real elements from the original image are used, there is nothing added but the estimated volumetric information!

NOTE. This is a personal vision about shapes and volumes, based on some scientific data, deduction and an artistic impression.

Video


This is a looped video, click to start and stop. Original movie is in HD  1080p resolution.
All the foreground stars from the original image are removed. Starlike objects seen in this animation are actually globular clusters orbiting the Andromeda Galaxy. Click the YouTube logo at lower right corner to see this video in YouTube at full screen, you should set quality to HD 1080p,


Original 2d-image used for this 3d-study

An original  blog post with imaging details can be found from HERE


Info about the technique used

Due to huge distances, real parallax can't be imaged in most of the astronomical objects.
I have developed an experimental technique to convert my astropics to a artificial volumetric models.

My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.

I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...

The general structure of many star forming regions is very same, there is a group of young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.

How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager.






Tuesday, May 10, 2016

An experimental 3D-stereo pictures of Pickering's Triangle



We are permanently out of astronomical darkness, up here 65N, for about six months. I will publish some more experimental material during this period of time. All my experiments are based on photos shot by me.

Pickering's Triangle as a freeview stereo pairs
Click for a large image

Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.


For a parallel viewing method (Eyes parallel to each other)

Image pair for the Parallel Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.



For a cross vision viewing method (Eyes crossed)

Image pair for the Cross Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.


HOW?

All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.

I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.

What are the known facts?

By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer.  There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .

Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.

Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits bluish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.

Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.





Tuesday, May 3, 2016

An experimental 3D-stereo pictures of IC 1805, the Heart Nebula


Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.

NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.


heart nebula, IC 1805, as a freeview stereo pairs
Click for a large image


For a parallel viewing method (Eyes parallel to each other)

Image pair for the Parallel Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.




For a cross vision viewing method (Eyes crossed)

Image pair for the Cross Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.


HOW?

All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.

I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.

What are the known facts?

By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer.  There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .

Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.

Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits bluish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.

Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.