COPYRIGHT, PLEASE NOTE
All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.
BUY A MUSEUM QUALITY POSTER
BUY A POSTER:https://astroanarchy.zenfolio.com/
Saturday, April 30, 2016
Hauskaa Vappua, Happy May day!
Iloista Vappua kaikille!
Happy may Day to all!
Big balloon , The Bubble Nebula, more info HERE
It's my hand in the image and no, this is not a proof about intelligent design!
This must be a largest balloon in the known universe, the string alone is about 15 light years long.
Happy may Day to all!
Big balloon , The Bubble Nebula, more info HERE
It's my hand in the image and no, this is not a proof about intelligent design!
This must be a largest balloon in the known universe, the string alone is about 15 light years long.
Friday, April 29, 2016
An experimental 3D-stereo pictures of Melotte 15
Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.
NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.
Melotte 15 as a freeview stereo pairs with no Stars
Click for a large image
For a parallel viewing method (Eyes parallel to each other)
For a cross vision viewing method (Eyes crossed)
For a parallel viewing method (Eyes parallel to each other)
For a cross vision viewing method (Eyes crossed)
For a parallel viewing method (Eyes parallel to each other)
Image pair for the Parallel Vision viewing method, click for a large image.
Original 2D-image and technical details can be seen HERE.
For a cross vision viewing method (Eyes crossed)
Melotte 15 as a freeview stereo pairs with Stars
Click for a large image
For a parallel viewing method (Eyes parallel to each other)
Image pair for the Parallel Vision viewing method, click for a large image.
For a cross vision viewing method (Eyes crossed)
HOW?
All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.
I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.
What are the known facts?
By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer. There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .
Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.
Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits bluish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.
Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.
Labels:
stereo images
Thursday, April 28, 2016
A collection of grayscale photos, Filaments of Cygnus
I haven't published any grayscale photos for a long time. Astronomical cameras are usually grayscale CCD-cameras since they have a better sensitivity and resolution. I have grayscale versions from all of my astronomical images. I have always been a big fan of grayscale images!
(Color images are not colorized, each RGB color channel is shot separately and combined to a final color image.)
A collection of filamental structures in Cygnus
During past year or so I have shot dim and less known filamental objects in constellation Cygnus. In this collection there are many of them as a grayscale photos.
Please, click for a large image!
Filaments of Western Cygnus, a two frame mosaic. Color image and info can be seen HERE
Filaments of Western Cygnus, a two frame mosaic. Color image and info can be seen HERE
Filaments of Central Cygnus, a two frame mosaic. Color image and info can be seen HERE
Filaments of Western Cygnus. Color image and info can be seen HERE
A wide field image mosaic of the whole Western Cygnus. Color image and info can be seen HERE
Filaments of Eastern Cygnus. Color image and info can be seen HERE
Filaments of Cygnus, a two frame mosaic of Veil Nebula supernova remnant. Color image and info can be seen HERE
Filaments of Cygnus, Veil Nebula supernova remnant. Color image and info can be seen HERE
Tuesday, April 26, 2016
Sharpless 114, the Flying Dragon Nebula, as an experimental 3D-stereo pictures.
Images are for two different viewing methods, the first set of images is for the Parallel Vision method and the second set for the Cross Vision method. Viewing instructions can be seen HERE.
NOTE! This is a personal vision about forms and shapes, based on some scientific facts, deduction and an artistic impression. A short explanation, about the method used for the 3D conversion of my astrophoto, at the end of this post.
Flying Dragon nebula, Sh2-114, as a freeview stereo pairs
Click for a large image
For a parallel viewing method (Eyes parallel to each other)
For a cross vision viewing method (Eyes crossed)
Image pair for the Cross Vision viewing method, click for a large image.
For a parallel viewing method (Eyes parallel to each other)
Image pair for the Parallel Vision viewing method, click for a large image.
For a cross vision viewing method (Eyes crossed)
Image pair for the Cross Vision viewing method, click for a large image.
HOW?
All the original 2D-images are imaged by me, if not otherwise stated.
Due the huge distances, no real parallax can be imaged for a volumetric information.
I have developed a method to turn any 2D-astronomical image to a various 3D-formats. The result is always an approximation of the reality, based on some known scientific facts, deduction and an artistic impression.
What are the known facts?
By using a scientifically estimated distance of the object, I can organize right amount of stars front and behind the object. (as then we know the absolute position of the object at our Milky-way)
Stars are divided to groups by apparent brightness, that can be used as a draft distance indicator, brighter the closer. There is usually a known star cluster or a star(s) coursing the ionization and they can be placed in right relative position to the nebula itself .
Generally emission nebulae are not lit by the starlight directly but radiation from stars ionizing gases in the nebula. Hence the nebula itself is emitting its own light, at wavelength typical to each element. Due to that, the thickness of the nebula can be estimated by its brightness, thicker = brighter. Nebulae are also more or less transparent, so we can see "both sides" at the same time.
Many other relative distances can be figured out just carefully studying the image, like dark nebulae must be front of bright ones. The local stellar wind, radiation pressure, from the star cluster, shapes the nebula, For that reason, pillar like formations must point to a cluster. Same radiation pressure usually forms kind of cavitation, at the nebulosa, around the star cluster, by blowing away all the gas around the source of stellar wind. The ionized oxygen, O-III, emits bluish light, it requires lots of energy to ionize. Due to that, the blue glowing area locates usually near the source of ionization, at the heart of the nebula. This and many other small indicators can be found by carefully studying the image itself.
Using the known data, I can build a kind of skeleton model of the nebula. Then the artistic part is mixed to a scientific part, rest is very much like a sculpting.
Labels:
stereo images
Subscribe to:
Posts (Atom)