COPYRIGHT, PLEASE NOTE
All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.
BUY A MUSEUM QUALITY POSTER
BUY A POSTER:https://astroanarchy.zenfolio.com/
Wednesday, February 6, 2013
3D-study of Messier 27, the Dumbbell nebula
This is an experimental test with a 3D-conversion of my astronomical images. Only real elements from my image are used, there is nothing added but the volumetric information!
(In this image, two of the stars are enhanced for a visual reasons)
NOTE. This is a personal vision about shapes and volumes, based on some scientific data and an artistic impression.
Dumbbell Nebula, M27, 3D-model
This is a looped video, click to start and stop. Original movie is in HD1080p resolution.
Large movie in Vimeo service
(HD720p)
https://vimeo.com/59052389
NOTE. Right click the video to turn HD and Loop on!
Large movie in Vimeo service
(HD720p)
https://vimeo.com/59052389
NOTE. Right click the video to turn HD and Loop on!
Original 2D-image of the Messier 27
More images and technical details in this blog post:
Buy a photographic print from HERE
Info about the technique used
Due to huge distances, real parallax can't be imaged in most of the astronomical objects.
I have developed an experimental technique to convert my astropics to a artificial volumetric models.
My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.
I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...
The general structure of many star forming regions is very same, there is a group of young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.
How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager. (Pun intended)
Labels:
animations
Monday, February 4, 2013
3D-study of the Rosette Nebula
This is an experimental test with a 3D-conversion of my astronomical images. Only real elements from my image are used, there is nothing added but the volumetric information!
NOTE. This is a personal vision about shapes and volumes, based on some scientific data and an artistic impression.
Rosette Nebula 3D-model I
Original 2D-image of the Rosetta Nebula
More images and technical details can be seen in this blog post:
http://astroanarchy.blogspot.fi/2012/12/caldwell-49-rosette-nebula-reprocessed.html
Rosette Nebula 3D-model II
Info about the technique used
Due to huge distances, real parallax can't be imaged in most of the astronomical objects.
I have developed an experimental technique to convert my astropics to a artificial volumetric models.
My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.
I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...
The general structure of many star forming regions is very same, there is a group of young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.
How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager. (Pun intended)
Labels:
animations
A 3D-study of the Simeis 147 supernova remnant
This is an experimental test with a 3D-conversion of my astronomical images. Only real elements from my image are used, there is nothing added but the volumetric information!
NOTE. This is a personal vision about shapes and volumes, based on some scientific data and an artistic impression.
Simeis 147 3D-model as a"fast fly trough"
Original 2D-image of Simeis 147
More images and technical details can be seen in this blog post:
http://astroanarchy.blogspot.fi/2012/02/siemis-147-new-data-added.html
Simeis 147 3D-model as a looped rotation
Info about the technique used
Due to huge distances, real parallax can't be imaged in most of the astronomical objects.
I have developed an experimental technique to convert my astropics to a artificial volumetric models.
My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.
I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...
The general structure of many star forming regions is very same, there is a group of young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.
How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager. (Pun intended)
Labels:
animations
Wednesday, January 30, 2013
A 3D-study of the Pac-Man Nebula, NGC 281
This is an experimental test with a 3D-conversion of my astronomical images. I have published some animated GIF files, this time I have done a short movie out of the model. Even though this is just a looped tip tilt movie, I'm able to do any movements with this kind of model.
Only real elements from my image are used, there is nothing added but the volumetric information!
NOTE. This is a personal vision about shapes and volumes, based on some scientific data and an artistic impression.
NOTE. This is a personal vision about shapes and volumes, based on some scientific data and an artistic impression.
A 3D study of NGC 281
Movie is in natural colors
In YouTube you can see this image at a full screen and resolution:
(Click the gear symbol to select 720p )
Info about the technique used
My 3-D experiments are a mixture of science and an artistic impression. I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.
I use a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, I'm using that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up etc...
The general structure of many star forming regions is very same, there is a group of young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.
How accurate the final model is, depends how much I have known and guessed right. The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space. This generally adds a new dimension to my hobby as an astronomical imager. (Pun intended)
Original 2D-image
Only elements form this image are used for the animation above
A blog post about this new image of mine can be seen here:
Labels:
animations
Subscribe to:
Posts (Atom)