COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Sunday, November 2, 2014

Sharpless 115 and a planetary nebula Abell 71



I have always wanted to shoot this complex nebula and planetary in Cygnus. The object is kind of dim and has lots of details. Actually it's so complex, that I had a hard time trying to figure out how to make a nice composition out of it.


Sharpless 115, Sh2-115 and Abell 71
A square of birth and death
Click for a large image

Mapped colors from an emission of the ionized elements, Red=Sulfur, Green=Hydrogen and the Blue =Oxygen.The bright spot at lower left is the Abell 71, PLN 85+4.1


Closeups from the image above



Abell 71, PLN 85+4.1



Image in visual colors

Image in visual spectrum composed from emission line channels, H-a, O-III and S-II


A starless version

Sometimes I'm publishing experimental starless versions of my photos. The actual nebula stands out nicely by that way.

INFO
Source: NASA APOD

 Sharpless 115 stands just north and west of Deneb, the alpha star of Cygnus the Swan in planet Earth's skies. Noted in the 1959 catalog by astronomer Stewart Sharpless (as Sh2-115) the faint but lovely emission nebula lies along the edge of one of the outer Milky Way's giant molecular clouds, about 7,500 light-years away. Shining with the light of ionized atoms of hydrogen, sulfur, and oxygen in this Hubble palette color composite image, the nebular glow is powered by hot stars in star cluster Berkeley 90. The cluster stars are likely only 100 million years old or so and are still embedded in Sharpless 115. But the stars' strong winds and radiation have cleared away much of their dusty, natal cloud. At the emission nebula's estimated distance, this cosmic close-up spans just under 100 light-years.

Orientation

Sharpless 115 and the Abell 71 can be seen in this older wide field image of the Cygnus nebula complex.
More info about this image can be seen HERE.


Technical details

Processing work flow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2
Astrodon filter, 5nm H-alpha
Astrodon filter, 3nm O-III

Exposure times
H-alpha, 18 x 1200s = 6h
O-III, 6 x 1200s = 2h
S-II, 3x1200s = 1h


A single un cropped, calibrated and stretched 20 min. H-alpha frame







Friday, October 31, 2014

The Cygnus Wall


A fast image from the last night, the Cygnus Wall, a part of the much large North america Nebula, NGC 7000. This is a relatively bright formation, three hours of H-alpha light and half an hour of O-III was captured for this photo. S-II channel is borrowed from an older wide field image, since the clouds rolled in before I was able to shoot it.


Cygnus Wall
Click for a large image

Mapped colors from an emission of the ionized elements, Red=Sulfur, Green=Hydrogen and the Blue =Oxygen.

Detail from the image above



INFO
Source: NASA APOD

The North America nebula on the sky can do what the North America continent on Earth cannot -- form stars. Specifically, in analogy to the Earth-confined continent, the bright part that appears as Central America and Mexico is actually a hot bed of gas, dust, and newly formed stars known as the Cygnus Wall. The above image shows the star forming wall lit and eroded by bright young stars, and partly hidden by the dark dust they have created. The part of the North America nebula (NGC 7000) shown spans about 15 light years and lies about 1,500 light years away toward the constellation of the Swan (Cygnus).

Technical details

Processing work flow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x2
Astrodon filter, 5nm H-aplha
Astrodon filter, 3nm O-III

Exposure times
H-alpha 6 x 1200s = 3h
O-III 3 x 600s = 30min. 
S-II is borrowed from my older wide field image

A single un cropped, calibrated and stretched 20 min. H-alpha frame






Wednesday, October 29, 2014

Tulip Nebula, the finalized project



I made a deeper view of the Tulip Nebula (Sharpless 101, Sh2-101) by adding some more exposure time.
There are now nearly 9h of H-alpha exposures integrated. I exposed couple of hours new O-III but most of the colors are from an older wider field image of mine.

Tulip Nebula, Sh2-101
in constellation Cygnus, click for a large image

Image is in mapped colors from emission of the ionized elements, Red=Sulfur, Green=Hydrogen and the Blue =Oxygen. If you like to have a photographic print, click HERE

A detail from the image above



A microquasar Cygnus X-1
Shown in a starless image

I removed all the stars but the microquasar Cygnus X-1. It can be seen as a bright dot at upper right.
The curved bow shock structure can be seen in the image above, just left from the microquasar itself.

INFO
Source: NASA APOD

What happens to matter that falls toward an energetic black hole? In the case of Cygnus X-1, perhaps little of that matter actually makes it in. Infalling gas may first collide not only with itself but with an accretion disk of swirling material surrounding the black hole. The result may be a microquasar that glows across the electromagnetic spectrum and produces powerful jets that expel much of the infalling matter back into the cosmos at near light speed before it can even approach the black hole's event horizon. Confirmation that black hole jets may create expanding shells has come recently from the discovery of shells surrounding Cygnus X-1. The physical processes that create the black hole jets is a topic that continues to be researched.

Tulip Nebula in visual palette

Emission channels are composed to match to a visual spectrum. If you like to have a photographic print, click HERE


H-alpha emission alone




A wide field image of the area

Colors for the new image are partly from this wide field shot. Original data can be seen HERE


Technical details

Processing work flow
Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Celestron Edge HD 1100 @ f7 with 0,7 focal reducer for Edge HD 1100 telescope

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar
Astrodon filter, 5nm H-aplha
Astrodon filter, 3nm O-III
Astrodon filter, 3nm S-II

Exposure times
H-alpha 26 x 1200s = 8h 40 min
O-III 6 x 600s = 1h
S-II 6x 600s = 1h

A single un cropped, calibrated and stretched 20 min. H-alpha frame





Monday, October 27, 2014

A start of the new project, the Tulip Nebula



At night of 23.10 I managed to shoot 3h 20min H-alpha lights for the Tulip Nebula in constellation Cygnus.
It looks like we going to have a clear nigh ahead, I'll shoot more lights for the emission of Hydrogen and if possible, some data for other two emission lines, O-III and S-II.

I need some more signal to show better the area of Cygnus X-1, a black hole candidate. It's a strong source of X-ray emission and there are some interesting but kind of dim shock fronts around the X-1.  This microquasar is a brighter of two stars above the Tulip Nebula, just middle right at one o'clock position.

The Tulip Nebula
Click for a large image

The Tulip Nebula at H-alpha light only, 10 x 1200s.

Some optical analysis

I'm amazed about the optical quality of the Celestron Edge HD 1100 with a 0.7 reducer for the Edge scope.
The massive reducer seems to do some magic, since the whole image area of the massive CCD in Apogee Alta U16 camera (36,8 x36,8mm) gets filled with a pinpoint stars from corner to corner.  That shouldn't be possible, since the CCD is somehow larger, than the light path in Edge scope. See the image bellow.


As seen in the schematics, there should be some unusable areas at corners of the image. 

A single uncropped, calibrated and stretched 20 min. H-alpha frame


Image above is an uncropped, calibrated and stretched, frame directly from the camera. Even the very corners are filled with a pinpoint stars.

Analysis of the image field
With the CCDInspector software

There is some very minor tweaking needed for the perfect collimation. Otherwise the image field is nearly perfectly flat. One pixel is about one arcseconds in this analysis. 


Image corners as a closeup
Note. Images are from a single unprocessed, calibrated and stretched 20 min. H-alpha frame












Some very minor distortion can be seen, especially at image 2. That's due to some slight miss collimation. So large sensor is very picky about a correct distance (146,5mm), collimation and tilt.