COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Tuesday, April 7, 2020

Grayscale Wonders part II


All the photos, I have published, are taken with a grayscale astronomical camera. Each color channel is shot separately and then combined to RGB color image. Since I'm doing only narrowband imaging due the extensive light pollution color channels are are emission line images. Most of the time I'm capturing three emission lines hydrogen, sulfur and oxygen. (H-alpha, S-II and O-III)

Usually most of the details are in hydrogen alpha emission line. Gray scale images can be really beautiful and many times I personally like them best. I will publish now some of my images from this winter season as a grayscale compositions. This is a part II of Grayscale Wonders, part one can be seen here, https://astroanarchy.blogspot.com/2020/04/greyscale-wonders.html

Please, open the full size photo by clicking the image, it's really worth it!



A two frame mosaic photo of Sharpless 205, NGC 1491 and Lynds Bright Nebula 696

Image details and a mapped color version can be found here, 
https://astroanarchy.blogspot.com/2020/03/a-two-frame-mosaic-photo-of-sharpless.html
nebula in visual colors can be seen here,
https://astroanarchy.blogspot.com/2020/03/sharpless-205-ngc-1491-and-lynds-bright.html


Great Mosaic of Cepheus


Image details and a mapped color version can be found here, 
https://astroanarchy.blogspot.com/2020/03/great-mosaic-of-cepheus.html

Great Mosaic of Auriga

Image details and a mapped color version can be found here, 
https://astroanarchy.blogspot.com/2020/03/the-grande-mosaic-of-auriga.html







Sunday, April 5, 2020

Supernova remnant IC 443 in visual spectrum



I have published this image in mapped colors at March 2, this time I have combined the narrowband emission channels so, that the result is very close to a visual colors.



IC 443, NGC 2175 & Messier 35
Click for a large image, it's worth it!

The red glow from an ionized hydrogen (H-alpha) is dominating the view, bluish hues are from an ionized oxygen (O-III)


H-alpha alone
Click for a large image

3h of light emitted by an ionized hydrogen, H-alpha.



INFO

IC 443

IC 443 (also known as the Jellyfish Nebula and Sharpless 248 (Sh2-248)) is a Galactic supernova remnant (SNR) in the constellation Gemini. It locates visually near the star Eta Geminorum at distance of about 5000 light years.
IC 443 may be the remains of a supernova that occurred 3,000 - 30,000 years ago. The same supernova event likely created the neutron star CXOU J061705.3+222127, the collapsed remnant of the stellar core. IC 443 is one of the best-studied cases of supernova remnants interacting with surrounding molecular clouds

NGC 2175

One of the reasons i took this image is the "Monkey head nebula", NGC 2175, at lower right corner.
I have shot this area with a much longer focal length back in 2015. At my image there is a very faint extended shape visible in my photo. I wanted to see, if I'm able to catch it with my current imaging system as well. This very dim feature is strongly visible in my new photo too! (Monkey head nebula is rotated 180 degrees in large image below.)



Older long focal length photo of NGC 2175 from Spring season 2015, more info here, https://astroanarchy.blogspot.com/2015/03/ngc-2174-monkey-head-nebula-project.html


Technical details

Processing workflow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Tokina AT-x f2.8 camera lens

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200
Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time 
H-alpha, 9 x 1200 s, binned 1x1 = 3 h
O-III, 3 x 1200 s, binned 2x2 = 1 h
S-II, 3 x 1200 s. binned 2x2 = 1 h


Saturday, April 4, 2020

Greyscale wonders



All the photos, I have published, are taken with a grayscale astronomical camera. Each color channel is shot separately and then combined to RGB color image. Since I'm doing only narrowband imaging due the extensive light pollution color channels are are emission line images. Most of the time I'm capturing three emission lines hydrogen, sulfur and oxygen. (H-alpha, S-II and O-III)

Usually most of the details are in hydrogen alpha emission line. Gray scale images can be really beautiful and many times I personally like them best. I will publish now some of my images from this winter season as a grayscale compositions.

Please, open the full size photo by clicking the image, it's really worth it!

Deep in the Heart Nebula

Heart Nebula in light of an ionized hydrogen, color image and technical details can be seen here, https://astroanarchy.blogspot.com/2020/01/deep-in-to-my-heart-ic-1805-in-mapped.html


Supernova remnant IC 443

Color image and technical details can be seen here, https://astroanarchy.blogspot.com/2020/03/supernova-remnant-ic-443-wide-field.html


IC 405 & 410


Color image and technical details can be seen here, https://astroanarchy.blogspot.com/2020/03/new-photo-deep-in-to-darkness.html








Wednesday, April 1, 2020

Two ways to go in a same field of view, planetary nebula Sh2-216 & supernova remnant Sh2-221


I have reprocessed this photo from March 1 2020, now the composition is more dynamic and colors are more vivid. Original photo can be seen here, https://astroanarchy.blogspot.com/2020/03/two-ways-to-die-sh2-216-sh2-221.html

This must be one of the dimmest targets I have shot. The supernova remnant Simeis 147 is large and dim but this nebula pair in Auriga is much dimmer. There are very few images about this target around. Photo is taken with Tokina AT-x 300mm f2.8 camera lens and Apogee Alta U16 astro camera.

Supernova remnant and a planetary nebula in the same field of view
Click for a large photo, it's worth it!

Mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Image spans about six degrees vertically!




Photo in visual spectrum
Click for a large photo


The red glow from an ionized hydrogen (H-alpha) is dominating the view, bluish hues are from an ionized oxygen (O-III)



H-alpha image
Click for a large photo

This grayscale image shows only the light emitted by an ionized hydrogen.


INFO

Sh2-216, the closest planetary nebula to earth ever discovered.

Image spans about six degrees horizontally, at left lays the large and very dim planetary nebula Sharpless 216 (aka Simeis 288, Marsalkova 44, LBN 742, GN 04.41.3)
This planetary nebula is the closest known planetary nebula to Earth, about 390 light years, and also one of the oldest known. Due the old age, it's very diffused, dim and large, apparent diameter is about 1,6 degrees. (Full Moon is about 0,5 degrees wide)

Supernova remnant Sh2-221

At right side of the photo lays a dim nad diffused supernova remnant Sh2-221 (SNR G160.4+02.8, HB9) it locates in constellation Auriga, about one degree West from star Capella. (Doesn't show in my image) The distance from the Earth, 2600 light years, is determined recently at 2007. This object was recognized as a supernova remnant back at seventies.


Technical details

Processing workflow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
Color combine in PS CS3
Levels and curves in PS CS3.

Imaging optics
Tokina AT-x f2.8 camera lens

Mount
10-micron 1000

Cameras and filters
Imaging camera Apogee Alta U16 and Apogee seven slot filter wheel
Guider camera, Lodestar x 2 and an old spotting scope of Meade LX200


Astrodon filters,
5nm H-alpha 3nm S-II and 3nm O-III

Total exposure time 26h

H-alpha, 36 x 1200 s, binned 1x1 = 12 h
O-III, 33 x 1200 s, binned 2x2 = 11 h
S-II, 9 x 1200 s. binned 2x2 = 3 h



Orientation in Auriga



An experimental starless image
Click for a large photo