COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Friday, January 31, 2014

It's over, I cant do my loved astronomical imaging anymore



Sad news, my old Meade LX200 GPS 12" telescope gave up and died.

Two nights ago, when I was imaging, my telescope stopped tracking and gave an error message "Motor Stalled".
It turned to be a fatal problem, the control board of Ra motor was fried. There is no way to fix it myself, the board has several layers and lots of microscopic components. This is a very old scope and it has been under a heavy usage in a very extreme weather conditions. Replacement parts are very hard to find, since this telescope is not manufactured any more. Even if I managed to have needed parts, it'll take the rest of the season to put all up and running again.

This instrument has been way below my level as an astronomical photographer for a years. Lots of desperate looking DIY solutions was used to make this old scope work as a some kind of imaging platform. I really need a new mount and a better optics. 

I can't afford to buy any new instruments, it looks like my days are over now. I'm not going to buy any second rate stuff, I'll rather be without, than start fighting against constant malfunctions ones again. I have spent countless hours outside, soldering some bad connectors, in a freezing wind and a bellow -20 centigrade temperatures to fix my scope, not any more. 

The only way to solve this is trying to find a sponsor. It won't be easy and it might never happen. 

An update, February 02. 2014

After a careful study of damages in my scope, I found out, that not only the Ra motor controller card was toasted. Also the motherboard, Ra motor and its encoder are burned and partly smelted too. This means, that the whole system is beyond repair, least with any reasonable costs. 


Images, taken with this deceased scope can be seen HERE.


A collection of images with the Meade LX200 GPS 12" telescope, Baader narrowband filters and the QHY9 astronomical camera
(Be sure to click the image to see it in full scale)









Wednesday, January 29, 2014

Three wide field projects, three constellations


Yesterday I published a large mosaic of Cepheus. I have done two other large mosaics from two other Constellations, Auriga and Cygnus. In this blog post I show all three at the same time. 


18-panels mosaic of the constellation Cygnus
Click for a large image, Note. 2300x1500 pixels and 3,5MB

Mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Total exposure time around 120 hours. Buy a photographic print from HERE

A blog post about this photo with more info and images:


12-panels mosaic of  the Constellation Auriga
Click for a large image, Note. 2000x1000 pixels and 2,5MB

Mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Total exposure time around 70 hours. Buy a photographic print from HERE

A blog post about this photo with more info and images:
http://astroanarchy.blogspot.fi/2012/03/auriga-panorama-gets-bigger-12-panels.html


10-panels mosaic of the constellation Cepheus
Click for a large image, Note. 2900x1700 pixels and 6,6MB

Mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Total exposure time around  92 hours. Buy a photographic print from HERE

A blog post about this photo with more info and images:
http://www.astroanarchy.blogspot.fi/2014/01/a-grande-finale-of-cepheus-project.html

(I have done many smaller mosaic images but only the very large ones are listed here.)






Tuesday, January 28, 2014

A grande finale of the Cepheus project, mosaic of ten panels with colors



I have planned this Cepheus project for a long time. Finally I have been able to finalize it. I have done some large mosaic images of nebula rich areas in our Milky way. The ultra fast camera optics, Canon EF 200mm f1.8, it's a perfect tool for the job. It has a large, flat and sharp, image field and full open at f1.8, it collects photons very fast. The final image covers an area of about 18x10 degrees. (Full Moon has an apparent size about 0,5 degrees. 720 full Moons are needed to cover this area in the sky.)

To have a color image, each of the panels have been shot three times. This narrowband image is shot with QHY9  (a cooled astronomical camera), Canon EF 200mm f1.8 camera optics full open,  Baader Planetarium Narrowband filter set for an emission of ionized elements, Hydrogen, Oxygen and Sulfur.  (H-alpha, O-III and S-III) The dimensions of the final mosaic image are 12000 x 6500 pixels.


Emission Nebulae in constellation Cepheus 
Mosaic image of ten individual panels, total exposures 92h.
Click for a very large image, 3000 pixels wide and 7MB.

Mapped colors from the emission of ionized elements, R=Sulfur, G=Hydrogen and B=Oxygen.
Buy a real photographic print from HERE


About 1:1 detail from the image above
Click for a full size photo

Lots of stars out there.


Cepheus Nebulae in visual spectrum
Composed from the narrowband channels

Image is in Natural color palette from the emission of ionized elements, 
R=Hydrogen + Sulfur, G=Oxygen and B=Oxygen + Hydrogen.
 Buy a real photographic print from HERE


B&W image with an emission of Hydrogen alpha only

Image of light, emitted by an ionized Hydrogen.
 Buy a real photographic print from HERE


A labeled image and orientation

Some main objects are labeled here


An orientation in constellation Cepheus. The mosaic image covers an area of ~18x10 dgrees.

Technical details

I have used lots of an older material for this image. I have shot this area for years, with a different instruments, with different focal lengths and apertures. The total exposure time for the final mosaic image is calculated by adding the exposures for the actual mosaic to the exposures for sub-images used.  

List of the sub-images used for a large, 10 panels, mosaic of Cepheus


Panels, shot for a final mosaic


Processing work flow

Image acquisition, MaxiDL v5.07.
Stacked and calibrated in CCDStack2.
Deconvolution with a CCDStack2 Positive Constraint, 33 iterations, added at 50% weight
An extra background normalization in CCDStack for a mosaic match.
Color combine for each panel in PS CS3
Panel composition in PS CS3
Levels, curves and the final color matching in PS CS3.

Imaging optics used for the mosaic image

Meade LX200 GPS 12" reduced to f5
Tokina AT-X 300mm f2.8
Canon EF 200mm f1.8

Cameras and filters

Imaging camera QHY 9, with a QHY filter wheel
Guider camera, Lodetsar
Active optics unit SXV-AO with Meade LX200 12" telescope
Baader Filter set, 7nm H-aplha, 8nm S-II and 8.5nm O-III

Total exposures used for a mosaic image

H-alpha 160 x 1200s Bin 1x1
O-III 66 x 1200s Bin 1x1
S-II 50 x 1200s Bin 1x1

Total exposures 276 x 1200s = 92h


Saturday, January 25, 2014

A zoom in series of the Cave Nebula, Sh2-155



Now and then I have published some zoom in series of various objects imaged by me.
The purpose is to show the apparent scale in the sky. Beside that, this series shows nicely the fractal nature of our universe.  Series are possible to make, since I have shot many objects with various focal lengths.
Like this one is shot with 200mm, 300mm and ~2000mm  focal lengths

The Cave Nebula, a study about the scale in the sky
Note. A circle, size of the Moon, in the images as a scale. (An apparent scale of the Moon is 0,5 degrees, or 30  arc minutes.)

All images are in Mapped colors from the emission of ionized elements,
R=Sulfur, G=Hydrogen and B=Oxygen.


Orientation in constellation Cepheus

An orientation in constellation Cepheus. The mosaic image covers an area of ~18x10 dgrees.