COPYRIGHT, PLEASE NOTE

All the material on this website is copyrighted to J-P Metsavainio, if not otherwise stated. Any content on this website may not be reproduced without the author’s permission.

Have a visit in my portfolio

Tuesday, November 6, 2012

Heart and Soul Nebulae, reprocessed



Since the weather up here has been less than supportive for astronomical imaging for a long time, I have played with an older data. 


Heart & Soul Nebulae
IC1805 & IC1848



Image is in HST-palette, (HST=Hubble Space Telescope) from the emission of ionized elements, 
R=Sulfur, G=Hydrogen and B=Oxygen.
Star colors are mixed from the NB channels, Red=H-a, G=O-III and B= 85%O-III + 15%H-a.


My photos, from several years, are used to combine this panoramic image of IC 1805 & 1848.
This emission nebula area is located in constellation Cassiopeia at distance of about 7500 light years.
I have made a scale study to show the apparent scale in the sky, it can be seen here:


Image is in visual spectrum, mixed from the same narrowband material, than image above.


Images used for the panorama with technical details




Monday, November 5, 2012

ART





I have seen this phrase somewhere, can't remember when and where though.

Image at the background is imaged at 2011.
It's part of the very large, 18-panel, mosaic image of Cygnus constellation.
Details here: http://astroanarchy.blogspot.fi/2011/12/cygnus-mosaic-18-panels-and-22-x-14.html

I did this, since beside being an astronomical photographer, this is an art form for me.
All my images can be seen in my portfolio: http://astroanarchy.zenfolio.com/


Saturday, November 3, 2012

An experimental 3D-animation of the Pelican Nebula



Since the Weather doesn't support new images, I'm publishing some experimental work here.

I have tested a new method to publish my 3D-images as a form of Lenticular prints.
For this technique to work, I need series of images from different angles, in this case 24 images are needed.
Lenticular printing is actually an old technique but in past few years it has become much more sophisticated.
The results can be stunning visually, image plane disappears and object floats in and outside of the frame.

Since astronomical objects are too far away, no real parallax can be imaged. Doe to that, I have developed a method to turn my images to various 3D-formats. My work flow is based on scientific data from the object, distance and the source of ionization are usually known. The different types of the nebulae has typical structures, pillar like formations must point to the source of ionization, the radiation pressure forms kind of hollow area, inside of the nebula, around newly born stars, dark nebulae must be at front of the emission ones to show, etc... rest of the missing information is then replaced with an artistic vision.
The whole process is pretty much like sculpting!

The Pelican Nebula in Cygnus as an animation
Only real elements from the original 2D-image are used for the animation

NOTE! Let the animation load, ~7MB
This is a personal vision about forms and shapes, based on some known facts and an artistic impression.

An original 2D-image, used for the animation



Image above is a small part of the very large mosaic image of the Cygnus constellation


Original blog post about this mosaic, with technical details and large images:



PS.

Here are other 3D-formats out of the same material


Stereopairs

For Parallel vision method


For Cross vision method


An anaglyph Red/Cyan 3D

You'll need Red/Cyan eyeglasses to see this image as 3D.
Red lens goes to Left eye.


Thursday, November 1, 2012

An experimental 3D-animation of the Lagoon Nebula, M8




I have tested a new method to publish my 3D-images as a form of Lenticular prints.
For this technique to work, I need series of images from different angles, in this case 24 images are needed. 
Lenticular printing is actually an old technique but in past few years it has become much more sophisticated.
The results can be stunning visually, image plane disappears and object floats in and outside of the frame.

Since astronomical objects are too far away, no real parallax can be imaged. Doe to that, I have developed a method to turn my images to various 3D-formats. My work flow is based on scientific data from the object, distance and the source of ionization are usually known. The different types of the nebulae has typical structures, pillar like formations must point to the source of ionization, the radiation pressure forms kind of hollow area, inside of the nebula, around newly born stars, dark nebulae must be at front of the emission ones to show, etc... rest of the missing information is then replaced with an artistic vision.
The whole process is pretty much like sculpting! 


Lagoon Nebula, Messier 8, as an animation


Please, let the animation load, ~5,5 MB

NOTE. Only real data from the original 2D-image is used for the 3D-animation!

Generally images about space objects shows them flat as a paintings in a canvas but in reality, they are volumes floating in three dimensional space. The purpose of my work is to show how I personally see those distant objects in my mind and they are fun to do!
The accuracy of the model depends how well I have known, figured out and guessed. Right or wrong, if my 3D experiments are giving something to think, they are working well.

Original 2D-image used for the animation


Technical details and information of M8 can be seen in this blog post:
http://astroanarchy.blogspot.fi/2010/06/m8-lagoon-nebula.html

My previous GIF-animations can be seen here:
IC 1396, http://www.astroanarchy.blogspot.fi/2012/10/an-experimental-3d-animation-from-my.html
NGC 6752, http://www.astroanarchy.blogspot.fi/2012/10/an-experiental-3d-animation-from-my_15.html
Veil Nebula, http://www.astroanarchy.blogspot.fi/2012/10/an-experiental-3d-animation-from-my.html